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On closed Weingarten surfaces

Wolfgang Kühnel and Michael Steller

Abstract: We investigate closed surfaces in Euclidean 3-space satisfying certain functional relations
κ = F (λ) between the principal curvatures κ, λ. In particular we find analytic closed surfaces of genus
zero where F is a quadratic polynomial or F (λ) = cλ2n+1. This generalizes results by H.Hopf on the
case where F is linear and the case of ellipsoids of revolution where F (λ) = cλ3.

2000 MSC classification: 53A05, 53C40
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Introduction

A surface in 3-space is called a Weingarten surface or a W -surface if the two principal curvatures κ
and λ are not independent of one another or, equivalently, if a certain relation Φ(κ, λ) = 0 is identically
satisfied on the surface. The set of solutions of this equation is also called the curvature diagram or
the W-diagram [4] of the surface. The study of Weingarten surfaces is a classical topic in differential
geometry, as introduced by Weingarten in 1861 [11]. For applications in CAGD see [2]. If the curvature
diagram degenerates to exactly one point then the surface has two constant principal curvatures which
is possible only for a piece of a plane, a sphere or a circular cylinder. If the curvature diagram is
contained in one of the coordinate axes through the origin then the surface is developable. If the
curvature diagram is contained in the main diagonal κ = λ then the surface is a piece of a plane or a
sphere because every point is an umbilic. The curvature diagram is contained in a straight line parallel
to the diagonal κ = −λ if and only if the mean curvature is constant. It is contained in a standard
hyperbola κ = c/λ if and only the Gaussian curvature is constant. Locally there are the following five
main classes of Weingarten surfaces:

1. surfaces of revolution,

2. tubes around curves where one principal curvature is constant,

3. helicoidal surfaces,

4. surfaces of constant Gaussian curvature,

5. surfaces of constant mean curvature (cmc surfaces).

This list is, of course, not exhausting. It is not difficult to obtain closed smooth Weingarten surfaces
of arbitrary genus by glueing together pieces of spheres, other surfaces of revolution and tubes. The
classical analytic examples are the closed surfaces of revolution of genus 0 or genus 1 on the one hand
and tubes around closed curves on the other hand. Since the discovery of the Wente torus [12] analytic
example of type 5 above have been investigated. N.Kapouleas [5] found closed surfaces of constant
mean curvature for higher genus. However, K.Voss proved in [10] that a closed analytic Weingarten
surface of genus zero is necessarily a surface of revolution. From the Delaunay surfaces one obtains
as a corollary a classical result of H.Hopf [4] that a closed surface of genus zero with constant mean
curvature must be a round sphere. It was the discovery of H.Hopf in the same article that there are
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closed analytic surfaces of genus zero with a linear curvature diagram. In the sequel the method of Hopf
is further extended to a larger class of surfaces with a prescribed curvature diagram. As a result, there
are explicit analytic solutions of genus zero also with self-intersections, see the section on quadratic
Weingarten surfaces.

The case of a linear curvature diagram: Hopf surfaces

Unless one of the principal curvatures is constant, the curvature diagram in the (κ, λ)-plane is linear if
and only if an equation

κ = cλ + d

is satisfied with two constants c, d where c 6= 0. It was observed by H.Hopf [4, p.238] that on a closed
analytic surface of genus g ≥ 2 such a relation is impossible unless c = −1 which is the case of a cmc
surface. By that time it was unknown whether such a surface exists. As one of the main results, in the
same article Hopf proved that in an umbilical point of an analytic surface either c or 1/c must be an
odd integer. This implies that on a closed analytic surface of genus zero a relation κ = cλ + d can hold
only for these specific values of c. Furthermore, all these values are in fact realized by certain closed
surfaces of revolution. The case of the standard sphere corresponds to the case c = 1 and (necessarily)
d = 0.

Notation: Whenever we talk about a surface of revolution then κ denotes the curvature of the profile
curve and λ denotes the other principal curvature of the surface.

1. Proposition (H.Hopf [4])
For any c > 1 and d ≤ 0 there is a unique (up to scaling) closed convex C2-surface of revolution
satisfying the equation κ = cλ + d and which is distinct from the standard sphere. This surface is
analytic if and only if c is an odd integer.

By a theorem of K.Voss [10] any closed analytic Weingarten surface of genus zero is necessarily a surface
of revolution. This leads to the following Corollary:

2. Corollary Any closed analytic surface of genus zero satisfying the same equation κ = cλ + d is
congruent to the standard sphere or to one of the Hopf surfaces in Proposition 1, up to scaling.

We do not repeat the proof of Proposition 1 here since this is a special case of a more general construction
described below. For d = 0 an elementary exposition is given in [7, 3.27] including a picture of typical
profile curves. Figure 1 shows a solution for c = 5 and d = 0 which is, therefore, real analytic. As a
matter of fact [6], any of these surfaces with κ = cλ satisfy in addition the equation KII = H where
KII denotes the inner curvature of the second fundamental form regarded as a Riemannian metric.
Similarly, for negative c one obtains complete surfaces of negative Gaussian curvature, including the
catenoid. Locally surfaces satisfying κ = cλ were rediscovered 30 years later in [9].
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Figure 1: A W -surface with κ = 5λ (Hopf surface).

Constructing closed surfaces

For the construction of surfaces of revolution satisfying particular equations between the principal
curvatures we choose a parametrization of the type

f(r, φ) =
`

r cos φ, r sin φ, h(r)
´

where r ≥ 0 and 0 ≤ φ ≤ 2π and where h is a function only of the parameter r. This is possible except
at points where the tangent of the profile curve is parallel to the axis of rotation. We call this a vertical
tangent. In such exceptional points there is a zero of 1/h′ (or a pole of h′). This has to be taken into
account in all the calculations below. Then the principal curvatures κ, λ are given by the equations

λ =
h′

r(1 + h′2)1/2
, κ =

`

rλ
´′

=
h′′

(1 + h′2)3/2

where ( )′ denotes differentiation by r. Consequently any equation of the type

κ = F (λ)

with a given continuous function F leads to the ODE
`

rλ
´′

= F (λ) or, equivalently,

λ′(r) =
F (λ) − λ

r
. (1)

It follows that locally any equation of this type with an arbitrary continuous function F admits a
solution. Apparently this was rediscovered in the paper [8]. In fact, this ODE is explicitly solvable by
separation of variables. As long as r2λ2(r) < 1, any solution of (1) satisfies the equation

h′(r) = ±
s

r2λ2(r)

1 − r2λ2(r)
. (2)
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Consequently the function h admits the following representation

h(r) = ±
Z

rλ(r)
p

1 − λ2(r)r2
dr. (3)

Example: In the case of Hopf surfaces with F (λ) = cλ+d one obtains the solution λ(r) = 1
c−1

(rc−1−d)
which is essentially unique. Then equation (3) leads to an explicit expression for h(r). The other
principal curvature is κ(r) = 1

c−1
(crc−1 − d).

The case of genus zero

If a connected component of the profile curve starts on the axis of rotation with a horizontal tangent
and ends at a point p with a vertical tangent, then we obtain a closed surface of genus zero by glueing
together two mirror symmetric copies of the surface. Under some additional conditions this closed
surface is of class C2 (resp. C∞).

3. Lemma Let λ be a solution of (1). Then the following conditions on λ and the resulting h are
necessary and sufficient for obtaining a compact surface of revolution of class C2:

1. λ is defined on an interval (0, ε), with a finite limit lim
r↘0

λ(r) =: λ(0).

2. For r = 0 there is an umbilic, i.e. λ(0) = F (λ(0)).

3. There is a maximal interval [0, r0) on which λ and h′ are defined as differentiable solutions,
necessarily with a vertical tangent at r0 i.e., necessarily with a pole of h′ at r0 and with λ(r0) =
± 1

r0
.

4. h is a continuous function on the interval [0, r0] including the endpoint r0 (i.e., the corresponding
improper integral in (3) converges).

Furthermore, the surface is analytic everywhere if and only if the following three conditions are satisfied:

5. λ is an even function at r = 0

6. F is analytic

7. dF (λ)
dλ

˛

˛

r=0
is a positive and odd integer (see [4, p.236]).

Remark: If the condition 1. above is satisfied, then the condition 2. follows from (1).

In the case of the Hopf surfaces conditions 1. – 4. are easily checked. This leads to the construction in
Proposition 1.
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4. Lemma If the conditions 1. and 3. above are satisfied by a particular solution λ with λ(r0) = ± 1
r0

then the condition 4. is equivalent to each of the following equivalent conditions

(a) (h′)2 has a simple pole at r = r0

(b) F (± 1
r0

) 6= 0

(c) λ′(r0) 6= ∓r−2
0

Consequently, Conditions 1. and 3. are sufficient conditions for obtaining a compact C2-surface of
genus zero whenever F (± 1

r0
) 6= 0.

The case of genus one

If a connected component of the profile curve (r, h(r)) starts at a point p0 and ends at a point p1 with
vertical tangents in opposite directions and on the same h-level, then we obtain a closed surface of
genus one by glueing together two mirror symmetric copies of it. The condition that the start- and
endpoint are on the same h-level is crucial and might be difficult to decide because the levels of those
points are represented by improper integrals. Under some additional conditions this closed surface is
of class C2 (resp. C∞).

5. Lemma Let λ be a solution of (1). Then the following conditions on λ and the resulting h are
sufficient for obtaining a compact surface of revolution of class C2 of genus one:

1* There is a maximal interval (r0, r1) ⊂ (0,∞) on which λ and h′ are defined as differentiable
solutions, necessarily with vertical tangents at r0 and r1 (in opposite directions), i.e., necessarily
with a pole of h′ at r0/1 and with λ(r0) = ± 1

r0
and λ(r1) = ∓ 1

r1
.

2* h is a continuous function on the interval [r0, r1] including the endpoints r0/1 (i.e., we have
convergence of the corresponding improper integral in (3))

3* At the two endpoints we have h(r0) = h(r1).

Furthermore, the surface is analytic everywhere if and only if F is analytic

6. Lemma If the condition 1* above are satisfied by a particular solution λ with λ(r0) = ± 1
r0

and

λ(r1) = ∓ 1
r1

then the condition 2* is equivalent to each of the following equivalent conditions

(a*) (h′)2 has a simple pole at r = r0 and r = r1

(b*) F (± 1
r0

) 6= 0 and F (∓ 1
r1

) 6= 0

(c*) λ′(r0) 6= ∓r−2
0 and λ′(r1) 6= ±r−2

1

Consequently, Condition 1* is sufficient for obtaining a compact C2-surface of genus one whenever
F (± 1

r0
) 6= 0, F (∓ 1

r1
) 6= 0 and h(r0) = h(r1).

For a compact surface of genus one the following necessary conditions must be satisfied:

1. There is a maximal interval (r0, r2) on which λ and h′ are defined as differentiable solutions,
necessarily with a vertical tangent at r0 and r2, i.e., necessarily with a pole of h′ at r0 and r2

and with λ(r0) = ± 1
r0

, λ(r2) = ∓ 1
r2

. In between there is a zero of λ at some point r1 ∈ (r0, r2)
which corresponds to a point with a horizontal tangent.

2. h is a differentiable function on the interval [r0, r2].
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Quadratic Weingarten surfaces: a quadric as diagram

Closed surfaces satisfying a linear relation aK + bH + c = 0 between the mean curvature and the
Gaussian curvature with constants a, b, c were studied by Chern in [3]. The result is that any closed
and convex surface of this type with K > 0 and a2 + b2 + c2 6= 0 is a standard sphere. This can be seen
as follows: For b 6= 0 the curvature diagram corresponding to this equation is nothing but the ordinary
rectangular hyperbola

“

κ +
a

2b

”“

λ +
a

2b

”

=
a2 − 4bc

4b2
.

At an umbilical point we have necessarily a2 − 4bc ≥ 0. Obviously, within the class of convex surfaces
the cases b = 0 and a2 − 4bc = 0 are possible only for the standard sphere. It turns out that the case
a2 − 4bc > 0 also leads to the standard sphere by the following argument which is due to Hilbert: The
larger principal curvature cannot attain its maximum if simultaneously the other principal curvature
attains its minimum.

In this section we study the case that the curvature diagram is a standard parabola with the corre-
sponding quadratic function

F (λ) = c(λ − λ∗)
2 + λ − a

where a, c, λ∗ are constants, c 6= 0. Since any closed surface of genus zero has an umbilic, we have
necessarily ac ≥ 0. The standard sphere is the particular solution where λ is constant. In all other
cases the ODE (1) can be solved as follows, with the notation y = λ(r) for a variable and λb(r) for the
various solutions:

Z

1

c(y − λ∗)2 − a
dy = log r + b with a constant b ∈ R (4)

Case 1: a = 0. Then the equation above becomes

− 1

c(λb(r) − λ∗)
= log r + b (5)

or, equivalently, λb(r) = λ∗ − 1

c(log r + b)

We have to check the conditions according to Lemma 3 above:

1. r = 0 corresponds to λ = λ∗.

2. For r = 0 we have an umbilic since κ = F (λ) = λ there.

3. In the region λ > λ∗ the function F (λ) tends to ±∞ for λ → ∞ depending on the sign of c.
Moreover, λ has a pole at r = e−b. Therefore there is an intersection point of the graph of λ(r) with
that of ± 1

r
, i.e., a point with λ2(r0) = 1

r2
0
, as required.

4. The extra condition F (± 1
r0

) 6= 0 is satisfied because of

F
“

± 1

r0

”

= c
“

± 1

r0
− λ∗

”2

± 1

r0
= c

“

± 1

r0
− λ∗

”2

+
c

|c| ·
1

r0
.
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Consequently, there is a closed convex surface satisfying this equation. This surface is never of class
C3 because λb is not differentiable at r = 0 since lim

r→0
λ′

b(r) = ±∞.

Case 2: ac > 0. Then the equation (4) above becomes

Z

1

c(y − λ∗)2 − a
dy =

1

2
√

ac
log±λ − λ∗ −

p

a/c

λ − λ∗ +
p

a/c
= log r + b (6)

or

Z

1

c(y − λ∗)2 − a
dy =

artanh±c(λ∗−λ)√
ac√

ac
= log r + b (7)

We can choose the positive sign in (6) and (7) which corresponds to just one of the branches of the
solution. Nevertheless, the considerations below can be adapted also to the negative sign. This leads
to the following two analytic expressions for λb:

λb(r) = λ∗ −
√

ac

c
tanh

`√
ac(log r + b)

´

(8)

and

λb(r) = λ∗ +

r

a

c
· 1 + r2c

√
a/c · e2bc

√
a/c

1 − r2c
√

a/c · e2bc
√

a/c
(9)

Again we have to check the conditions as above:

1. r = 0 corresponds to λ = λ∗ +
√

ac
c

.

2. For r = 0 we have an umbilic since κ = F (λ) = λ there.

3. Because λb is continuous on [0,∞) we have to show that there exist some constants b leading to at
least one intersection point of the graphs of the functions λb(r) and ± 1

r
(we always take the intersection

point r0 nearest to the axis of rotation). If we combine the equation λb(r) = ± 1
r

with (8) and resolve
it for b = b(r) then we get:

b(r) =
1√
ac

artanh
“ c(λ∗ ∓ 1/r)√

ac

”

− log r

Therefore b(r) is well defined if and only if the following inequality holds

˛

˛

˛

c(λ∗ ∓ 1/r)√
ac

˛

˛

˛
< 1 ⇐⇒

˛

˛

˛
λ∗ ∓ 1

r

˛

˛

˛
<

√
ac

|c|
Depending on the sign, there is a solution r in a union of at most two intervals I = I1 ∪ I2 ⊂ R

+

where one of them is not empty. It follows that we always get a 1-parameter family of solutions λb

depending on constants b ranging in I1 or in I2, respectively, such that there are intersection points
with ± 1

r
because b(r) is continuous and not constant (i.e., for one i ∈ {1, 2} holds | b(Ii) |> 1).
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4. From 3. we know that for every r ∈ I we have an intersection point of of the graphs of λb(r) and
± 1

r
. Because F has at most two zeros it follows that there are at most two elements r0, r1 ∈ I with

F (± 1
r0

) = F (± 1
r1

) = 0 (for at least one of the signs). For these r0/1 we know that the constant b have
to be b(r0) resp. b(r1) where we have to regard the sign in the definition of b(r). By analyticity of the
solutions in (8) there are always a finite number of constants b ∈ b(I) so that r0/1 is an intersection
point of λb and ± 1

r
. Combining this with Lemma 4 (b) we see that the extra condition F

`

± 1
r0

´

6= 0
is satisfied for all constants b ranging in the interval above after removing a finite number of constants.
Furthermore we can choose a smaller interval B ⊂ b(I) within the remaining part of b(I). With respect
to this interval B we finally obtain a 1-parameter family of solutions λb depending on b ∈ B and
satisfying 3. and 4.

The surface is analytic if and only if
√

ac is an integer since we have

–0.4

–0.2

0

0.2

0.4

0.6

0.8

0.2 0.4 0.6 0.8 1

Figure 2: Profile curves of W -surfaces with κ = λ
2 + λ − 4.

dF (λ)

dλ

˛

˛

˛

r=0
= 2c

`

λ∗ +

√
ac

c
− λ∗

´

+ 1 = 2
√

ac + 1

and because the expression in (9) for λb is an even function if
√

ac is an integer.

This proves the following Propositions 7 and 8:
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Figure 3: W -surfaces satisfying κ = λ
2 + λ − 4 with b = 0.7 and b = 0.1.

7. Proposition (quadratic W -surfaces)
For any constants a, c and λ∗ with ac > 0 there exists a 1-parameter family (depending on the choice
of a parameter b ) of closed surfaces of class C2 satisfying the equation

κ = c(λ − λ∗)
2 + λ − a.

These are analytic if and only if
√

ac is an integer.

Figure 2 shows several profile curves for c = 1, a = 4, and λ∗ = 0, Figure 3 shows two particular
surfaces which are analytic since

√
ac = 2 in this case.

8. Proposition For any constants c 6= 0 and λ∗ there exists a 1-parameter family (depending on
the choice of a parameter b ) of closed C2-surfaces satisfying the equation κ = c(λ− λ∗)

2 + λ. None of
them is of class C3, except for the standard sphere.

Generalized Hopf surfaces: the case κ = λ
α.

It is well known [1, Ex.3] that the ellipsoid of revolution

n

(x, y, z)
˛

˛

˛

x2 + y2

a2
+

z2

b2
= 1

o

satisfies the relation

κ =
a4

b2
λ3

between the two principal curvatures (note our convention that κ denotes the curvature of the profile
curve). Conversely, any closed surface of revolution satisfying κ = cλ3 with a certain constant c is
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congruent to some ellipsoid of revolution. More generally, in this section we study equations of the
type κ = cλα or, equivalently,

F (λ) = cλα

with some constants c > 0 and α 6= 1, α 6= 0. Recall that the case α = 1 leads to a linear curvature
diagram and was studied above. Hence the ODE (1) takes the particular form

λ′(r) =
c

r
·

“

λ(r)
”α

− 1

r
· λ(r)

which is known as Bernoulli’s differential equation. Any solution is of the form

λb(r) =
“

c +
b

r1−α

” 1
1−α

with a constant of integration b ∈ R. The particular case b = 0 leads to λ0(r) = c
1

1−α and, consequently,
to constant principal curvatures κ0 = F (λ0) = cλα

0 = λ0. This is the case of the round sphere of radius
R = 1/λ0. Therefore in the sequel we assume b 6= 0. There are two cases:

Case 1: α < 1.
In this case we have

lim
r↘0

|λb(r)| = lim
r↘0

“

|b|rα−1
”1/(1−α)

= ∞.

Therefore, no regular surface of genus zero can satisfy this equation since any point on the axis of
rotation is a singularity. However, the solution leads to a convex surface with two isolated singularities
on the axis, just as the classical Hopf surfaces for 0 < c < 1.

Case 2: α > 1.
In this case we can verify that all the conditions in Lemma 3 are satisfied:

1. We have
lim
r↘0

λb(r) = c1/(1−α)

for arbitrary choice of b. For b > 0 the solution λb is defined on [0,∞), for b < 0 the solution has a

pole at r =
`

− c
b

´1/(α−1)
.

2. For r = 0 we have an umbilic since F (λ(0)) = λ(0).

3. Under the assumption b < 0 the solution λb has a pole. Therefore there is an intersection point of
its graph with the graph of the function ± 1

r
, i.e., there is a number r0 such that λ(r0) = ± 1

r0
. For

0 < b < 1 the resulting function h′(r) has a pole where necessarily r2λ2 = 1 is satisfied, compare
equation (2).

4. The additional condition F (± 1
r0

) 6= 0 is trivially satisfied.

The surface is analytic if and only if α is an odd integer since we have

dF (λ)

dλ

˛

˛

˛

r=0
= cα(λ(0))α−1 = α

on the one hand and since λb is an even function for odd α on the other.

Therefore we obtain the following generalization of Proposition 1 above:
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Figure 4: Generalized Hopf surfaces with κ = λ
5.
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9. Proposition (Generalized Hopf surfaces)
For any constant α > 1 and any c > 0 there exists a 1-parameter family (depending on the choice of
a parameter b < 1 ) of closed convex surfaces of class C2 satisfying the equation κ = cλα. These are
analytic if and only if α is an odd integer. Up to scaling, these surfaces form a 2-parameter family.
The particular case α = 3 corresponds to the classical ellipsoids of revolution.

In the case α = 3 the solution is

λb(r) =
“

c + br2
”− 1

2

and, consequently,

h = ±
Z

r
p

c + (b − 1)r2
dr =

±1

b − 1

p

c + (b − 1)r2 + const

which describes an ellipsoid for b < 1 and a hyperboloid for b > 1. The particular case b = 1 leads to
a paraboloid, for b = 0 one obtains a sphere.

Similarly, each of the cases α = 5, 7, 9, . . . leads to a family of generalized ellipsoids in the sense that
these are analytic convex surfaces with a shape which is quite similar to that of an ellipsoid. In any case
the standard sphere is a particular member of this family. Similarly, for b = 1 we obtain generalized
paraboloids and for b > 1 generalized hyperboloids. Figure 4 shows generalized ellipsoids with α = 5,
c = 1 and four cases b = 0.9, 0.5, 0, −0.5.

In constrast to this situation, we have the following:

10. Proposition For any constant α < 1 and any c > 0 there is no closed genus zero C2-surface
of revolution satisfying the equation κ = cλα, except for the standard sphere. Therefore, if there is
an analytic surface of genus zero (distinct from the standard sphere) satisfying κ = cλα with α < 1
and c > 0 then there is no analytic surface of genus zero satisfying λ = c̃κα with the same α and any
constant c̃. In particular, the ellipsoids of revolution are the only analytic surfaces of genus zero where
the principal curvatures κ1, κ2 satisfy κ1 = c(κ2)

3.

Closed Weingarten surfaces of genus one: An example

For obtaining solutions λ which lead to a closed surface of genus one we have to check the conditions
in Lemma 5 above. The crucial condition 3∗ is necessary for glueing together two mirror symmetric
copies of the surface. The trivial case is κ = c (constant) leading to the standard torus of revolution.
Unfortunately, for the functions F studied in the sections above we could not verify condition 3∗.
Therefore, as an example we study the case of a curvature diagram associated with the function

F (λ) = cosh(λ) + λ.

Then the ODE (1) can be solved by

λ(r) = log
“

tan
`1

2
(log r + c)

´

”

(10)
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Figure 5: Profile curve of a W -surface with κ = coshλ + λ for c0 = 1.177.

where c ∈ R and r > 0. This solution is defined on any interval of the form (r0
k, r1

k) := (e2kπ−c, e(2k+1)π−c)
for arbitrary k ∈ Z.

We have to check the conditions according to Lemma 5 above:

1*. We have lim
r↘e2kπ−c

λ(r) = −∞ and lim
r↗e(2k+1)π−c

λ(r) = ∞. Hence there is a maximal interval

(r0, r1) satisfying the conditions in 1*, i.e., at the endpoints of the interval we have an intersection of
the graph of λ with that of 1/r and −1/r, respectively.

2*. From F (x) = cosh(x) + x > 0 for x ∈ R we obtain F (± 1
r1

) 6= 0 and F (∓ 1
r1

) 6= 0. Hence 2* follows
from Lemma 6.

3*. In order to verify 3* we have to evaluate h(r0) and h(r1) as improper integrals. We now choose
k = 0 and 1/2 < c < π/2 so we have exactly one point r0(c) with λ(r0(c)) = −1/r0(c) and one point
r1(c) with λ(r1(c)) = 1/r1(c). The difference d(c) := h(r0(c)) − h(r1(c)) is a continuous function of
c. By a numerical calculation we obtain d(1) ≈ 0.3418424004 and d(1.2) ≈ −0.2427157496. Because
of continuity of d there is a c0 ∈ (1, 1.2) with d(c0) = 0. A reasonable approximation is c0 ≈ 1.177
with r0(c0) ≈ 0.3437410829 and r1(c0) ≈ 2.271531739. Figure 5 shows the profile curve for c0 = 1.177
where the vertical coordinate axis is the axis of rotation, and Figure 6 shows the W -surface of genus
one itself. The surface is analytic because F is analytic.

This implies the following:
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Figure 6: A W -torus satisfying κ = cosh λ + λ.

11. Proposition There is a closed analytic surface of revolution of genus one satisfying the equation
κ = cosh(λ) + λ.

Presumably, by the same method it is possible to find many other examples of W -surfaces of genus one
with prescribed relations κ = F (λ).
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