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Abstract

A logarithmic type Lieb-Thirring inequality for two-dimensional Schrödinger operators is

established. The result is applied to prove spectral estimates on trapped modes in quantum

layers.

1 Introduction

It is well known that the sum of the moments of negative eigenvalues −λj of a one-dimensional

Schrödinger operator − d2

dx2 − V can be estimated by

∑

j

λγ
j ≤ Lγ,1

∫

R

V+(x)γ+ 1
2 dx, γ ≥ 1

2
, (1)

where Lγ,1 is a constant independent of V , see [8], [12]. For γ = 1
2 this bound has the correct

weak coupling behavior, see [10], and it also shows the correct Weyl-type asymptotics in the semi-
classical limit. Moreover, (1) fails to hold whenever γ < 1

2 . The case γ = 1
2 therefore represents

certain borderline inequality in dimension one.
The situation is much less satisfactory in dimension two. The corresponding two-dimensional

Lieb-Thirring bound

∑

j

λγ
j = tr (−∆ − V )

γ
− ≤ Lγ,2

∫

R2

V+(x)γ+1 dx (2)

holds for all γ > 0, [8]. Dimensional analysis shows that here the borderline should be γ = 0.
However, (2) fails for γ = 0, because −∆ − V has at least one negative eigenvalue whenever
∫

V ≥ 0 , see [10]. In addition, it was shown in [10] that if V decays fast enough, the operator
−∆ − αV has for small α only one eigenvalue which goes to zero exponentially fast:

λ1 ∼ e−4π(α
R

V )−1

, α → 0 . (3)

It follows from (3) that the optimal behavior for α → 0 cannot be reached in the power-like scale
(2), no matter how small γ is, since the l.h.s. decays faster than any power of α. This means that
in order to obtain a Lieb-Thirring type inequality with the optimal behavior in the weak coupling
limit, one should introduce a different scale on the l.h.s. of (2).

In the present paper we want to find a two-dimensional analog of the one-dimensional borderline
inequality, which corresponds to γ = 1

2 in (1). In other words, we want to establish an inequality
with the r.h.s. proportional to V and with the correct order of asymptotics in weak and strong
coupling regime. Obviously, we have to replace the power function on the l.h.s. of (2) by a new
function F (λ), which will approximate identity as close as possible. On the other hand, since
−∆− V has always at least one eigenvalue, it is necessary that F (0) = 0. Moreover, equation (3)
shows that F should grow from zero faster than any power of λ, namely as | ln λ|−1. This leads
us to define the family of functions Fs : (0,∞) → (0, 1] by

∀ s > 0 Fs(t) :=







| ln ts2|−1 0 < t ≤ e−1s−2 ,

1 t > e−1s−2 .
(4)

Notice that each Fs is non decreasing and continuous and that Fs(t) → 1 point-wise as s →
∞. Hence our goal is to establish an appropriate estimate on the regularized counting function
∑

j Fs(λj) for large values of the parameter s.

Our main results is formulated in the next section. It turns out, that
∑

j Fs(λj) can be
estimated by a sum of two integrals, one of which includes a local logarithmic weight, see Theorem
1. The inequality (8) established in Theorem 1 has the correct behavior for weak as well as for
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strong potentials, see Remark 1. We also show that the logarithmic weight in (8) cannot be
removed, see Remark 2. Moreover, in Corollary 1 we obtain individual estimates on eigenvalues
of Schrödinger operators with slowly decaying potentials. The proof of the main result, including
two auxiliary Lemmata, is then given in section 3. In the closing section 4 we apply Theorem 1 to
analyze discrete spectrum of a Schrödinger operators corresponding to quantum layers. The result
established in section 4 may be regarded as two-dimensional analog of Lieb-Thirring inequalities
on trapped modes in quantum waveguides obtained in [5].

2 Main results

For a given V we define the Schrödinger operator

−∆ − V in L2(R2) (5)

as the Friedrich extension of the operator associated with the quadratic form

QV [u] =

∫

R2

(

|∇u|2 − V |u|2
)

dx on C∞
0 (R2) , (6)

provided QV is bounded from below. Throughout the paper we will suppose that V satisfies

Assumption A. The function V (x) is such that σess(−∆ − V ) = [0,∞) .

Following notation will be used in the text. Given a self-adjoint operator T , the number of
negative eigenvalues, counting their multiplicity, of T to the left of a point −ν is denoted by
N(ν, T ). The symbol R+ stands for the set (0,∞). Moreover, as in [6] we define the space
L1(R+, Lp(S1)) in polar coordinates (r, θ) in R2, as the space of functions f such that

‖f‖L1(R+,Lp(S1)) :=

∫ ∞

0

(
∫ 2π

0

|f(r, θ)|p dθ

)1/p

r dr < ∞ . (7)

Finally, given s > 0 we denote B(s) := {x ∈ R
2 : |x| < s}. We then have

Theorem 1. Let V ≥ 0 and V ∈ L1
loc(R

2, | ln |x|| dx). Assume that V ∈ L1(R+, Lp(S1)) for some
p > 1. Then the quadratic form (6) is bounded from below and closable. The negative eigenvalues
−λj of the operator associated with its closure satisfy the inequality

∑

j

Fs(λj) ≤ c1 ‖V ln(|x|/s)‖L1(B(s)) + cp ‖V ‖L1(R+,Lp(S1)) (8)

for all s ∈ R+. The constants c1 and cp are independent of s and V .

In particular, if V (x) = V (|x|), then there exists a constant C, such that

∑

j

Fs(λj) ≤ C
(

‖V ln(|x|/s)‖L1(B(s)) + ‖V ‖L1(R2)

)

(9)

holds true for all s ∈ R+.

Remark 1. Notice that the r.h.s. of (8) has the right order of asymptotics in both weak and
strong coupling limits. Indeed, replacing V by αV and assuming that V ∈ L1(R2, (| ln |x||+1) dx)
it can be seen from the definition of Fs that

∑

j

Fs(λj) ∼ α , α → 0 ∨ α → ∞ .
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For α → 0 this follows from (3). For α → ∞ is the behavior of
∑

j Fs governed by the Weyl
asymptotics for the counting function:

N(e−1s−2,−∆ − αV ) ≤
∑

j

Fs(λj) ≤ N(0,−∆− αV ) . (10)

The latter is linear in α when α → ∞ provided V ∈ L1(R2, (| ln |x|| + 1) dx), see also Remark 4.

Remark 2. We would like to emphasize that
∑

j Fs(λj) cannot be estimated only in terms of
‖V ‖L1(R2). In particular, the logarithmic term in (8) and (9) cannot be removed. This is due
to the fact that there exist potentials V ∈ L1(R2) with a strong local singularity, such that the
semi-classical asymptotics of N(ν,−∆ − V ) is non-Weyl for any ν > 0, [2]. Namely if we define

Vσ(x) = r−2 | ln r|−2 | ln | ln r||−1/σ , r < e−2, σ > 1

Vσ(x) = 0, r ≥ e−2 , (11)

where r = |x|, then Vσ ∈ L1(R2) for all σ > 1, but

N(ν, −∆ − αVσ) ∼ ασ α → ∞ , ∀ ν > 0 , (12)

see [2, Sec. 6.5]. If (9) were true with the logarithmic factor removed, it would be in obvious con-
tradiction with (10) and (12). Moreover, the asymptotics (12) remains valid also if the singularity
of V is not placed at zero, but some other point. This shows that the condition p > 1 in Theorem
1 is necessary.

Remark 3. The non-Weyl asymptotics of N(0,−∆ − αV ) can also occur for potentials which
have no singularities, but which decay at infinity too slowly, so that the associated eigenvalues
accumulate at zero. For example, if

V Φ
σ (x) = Φ(θ) r−2 (ln r)−2 (ln ln r)−1/σ , r > e2, σ > 1

V Φ
σ (x) = 0, r ≤ e2 , (13)

then
N(0,−∆− αV Φ

σ ) ∼ ασ ,

see [2]. In this case, however, Theorem 1 says that the eigenvalues accumulating at zero are small
enough so that their total contribution to

∑

j Fs(λj) grows at most linearly in α. More exactly,
inequality (8) gives the following estimate:

Corollary 1. Let Φ ∈ Lp(0, 2π) for some p > 1. Let V satisfy the assumptions of Theorem 1 and
suppose that

V (x) − V Φ
σ (x) = o

(

V |Φ|
σ (x)

)

, |x| → ∞ ,

where V Φ
σ (x) is defined by (13). Denote n(α) = N(0,−∆ − αV ) and let −λn(α) be the largest

eigenvalue of −∆ − αV . Then, for any fixed s > 0 there exists a constant cs > 0 such that for α
large enough

λn(α) ≤ s−2 exp(−cs ασ−1) . (14)

Proof. Inequality (8) shows that
∑

j Fs(λj) ≤ c′sα for some c′s. In particular, this implies

j Fs(λj) ≤ c′s α , ∀ j . (15)

On the other hand, from [2, Prop. 6.1] follows that n(α) ≥ c̃ ασ for some c̃ and α large enough.
An application of the inequality (15) with j = n(α) then yields (14). Analogous estimates for
λn(α)−k , k ∈ N can be obtained by an obvious modification.
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3 Proof of Theorem 1

We prove the inequality (8) for continuous potentials with compact support. The general case
then follows by approximating V by a sequence of continuous compactly supported functions and
using a standard limiting argument in (8).

As usual in the borderline situations, the method of [8] cannot be directly applied and a
different strategy is needed. We shall treat the operator −∆ − V separately on the space of
spherically symmetric functions in L2(R2) and on its orthogonal complement. To this end we
define the corresponding projection operators:

(Pu)(r) =
1

2π

∫ 2π

0

u(r, θ) dθ , Qu = u − Pu , u ∈ L2(R2) .

Since P and Q commute with −∆, the variational principle says that for each a > 1 the operator
inequality

−∆ − V ≥ P (−∆ − (1 + a−1) V ) P + Q (−∆ − (1 + a) V ) Q (16)

holds. Let us denote by −λP
j and −λQ

j the non decreasing sequences of negative eigenvalues of

the operators P (−∆ − (1 + a−1) V ) P and Q (−∆ − (1 + a V ) Q respectively. Clearly we have

∑

j

Fs(λj) ≤
∑

j

Fs(λ
P
j ) +

∑

j

Fs(λ
Q
j ) . (17)

We are going to find appropriate bounds on the two terms on the r.h.s. of (17) separately. First
we note that P (−∆ − (1 + a−1) V ) P is unitarily equivalent to the operator

h = − d2

dr2
− 1

4r2
− W (r) = h0 − W (r) in L2(R+) (18)

with the Dirichlet boundary condition at zero and with the potential

W (r) =
1 + a

2πa

∫ 2π

0

V (r, θ) dθ . (19)

More precisely, h is associated with the closure of the quadratic form

q[ϕ] =

∫

R+

(

|ϕ′|2 − W |ϕ|2
)

r dr on C∞
0 (R+) . (20)

We start with the estimate on the lowest eigenvalue of h.

Lemma 1. Let V be continuous and compactly supported and let W be given by (19). Denote by
−λP

1 the lowest eigenvalue of the operator h. Then there exists a constant c2, independent of s,
such that

Fs(λ
P
1 ) ≤ c2

∫ ∞

0

W (r) r
(

1 + χ(0,s)(r) | ln r/s|
)

dr . (21)

holds true for all s ∈ R+.

Proof. From the Sturm-Liouville theory we find the Green function of the operator h0 at the point
−κ2:

G0(r, r
′, κ) :=







√
rr′ I0(κr) K0(κr′) 0 ≤ r ≤ r′ < ∞,

√
rr′ I0(κr′) K0(κr) 0 ≤ r′ < r < ∞ ,

where I0, K0 are the modified Bessel functions, see [1]. The Birman-Schwinger principle tells us
that if for certain value of κ the trace of the operator

K(κ) :=
√

W (h0 + κ2)−1
√

W
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is less than or equal to 1, then the inequality λP
1 ≤ κ2 holds. Taking into account the continuity

of W , this implies
∫ ∞

0

r I0

(

√

λP
1 r

)

K0

(

√

λP
1 r

)

W (r) dr ≥ 1 . (22)

Now we introduce the substitutions τ = s
√

λP
1 , t = s−1r and recall that I0(0) = 1 while K0 has

a logarithmic singularity at zero, see [1, Chap.9]. We thus find out that

F1

(

τ2
)

I0(τt) K0(τt) ≤ c2

(

1 + χ(0,1)(t) | ln t|
)

, ∀τ ≥ 0 ,

where c2 is a suitable constant independent of τ . Here we have used the fact that

|I0(z) K0(z)| ≤ const ∀ z ≥ 1 , (23)

see [1]. Finally, we multiply both sides of inequality (22) by Fs(λ
P
1 ) and note that

Fs(λ
P
1 ) = Fs

(

τ2/s2
)

= F1

(

τ2
)

.

The proof is complete.

Next we estimate the higher eigenvalues of h.

Lemma 2. Under the assumptions of Lemma 1 there exists a constant c3 such that

∑

j≥2

Fs(λ
P
j ) ≤

∫ s

0

W (r) r |ln r/s| dr + c3

∫ ∞

s

W (r) r dr, ∀ s ∈ R+ .

Proof. Let us introduce the auxiliary operator

hd = − d2

dr2
− 1

4r2
− W (r) in L2(R+) (24)

subject to the Dirichlet boundary conditions at zero and at the point s. Let −µj be the non
decreasing sequence of negative eigenvalues of hd. Since imposing the Dirichlet boundary condition
at s is a rank one perturbation, it follows from the variational principle that

∑

j≥2

Fs(λ
P
j ) ≤

∑

j≥1

Fs(µj) . (25)

Moreover, hd is unitarily equivalent to the orthogonal sum h1 ⊕ h2, where

h1 = h1,0 − W (r) = − d2

dr2
− 1

4r2
− W (r) in L2(0, s)

h2 = h2,0 − W (r) = − d2

dr2
− 1

4r2
− W (r) in L2(s,∞)

with Dirichlet boundary conditions at 0 and s. Keeping in mind that Fs ≤ 1 we will estimate (25)
as follows:

∑

j

Fs(µj) ≤ N(0, h1) +
∑

j

Fs(µ
′
j) , (26)

where −µ′
j are the negative eigenvalues of h2. To continue we calculate the diagonal elements of

the Green functions of the free operators h1,0 and h2,0. Similarly as in the proof of Lemma 1 we
get

G1(r, r, κ) = r I0(κr)
(

K0(κr) + β−1
s (κ)I0(κr)

)

0 ≤ r ≤ s

G2(r, r, κ) = r K0(κr) (I0(κr) + βs(κ)K0(κr)) s ≤ r < ∞ , (27)
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where

βs(κ) = − I0(κs)

K0(κs)
.

The Birman-Schwinger principle thus gives us the following estimates on the number of eigenvalues
of h1 and h2 to the left of the point −κ2:

N(κ2, h1) ≤
∫ s

0

G1(r, r, κ) W (r) dr, N(κ2, h2) ≤
∫ ∞

s

G2(r, r, κ) W (r) dr . (28)

Passing to the limit κ → 0 and using the asymptotic behavior of the Bessel functions I0 and K0,
[1], we find out that for any fixed r holds the identity

lim
κ→0

G1(r, r, κ) = lim
κ→0

G2(r, r, κ) = r |ln r/s| (29)

The assumption on W and the dominated convergence theorem then allow us to interchange the
limit κ → 0 with the integration in (28) to obtain

N(0, h1) ≤
∫ s

0

r |ln r/s| W (r) dr . (30)

This estimates the first term in (26). In order to find an upper bound on the second term in (26),
we employ the formula

∑

j

Fs(µ
′
j) =

∫ ∞

0

F ′
s(t) N(t, h2) dt , (31)

see [8]. Using (28), the substitution t → t2 and the Fubini theorem we get

∑

j

Fs(µ
′
j) ≤ 1

2

∫ ∞

s

W (r)

∫ e−1/2s−1

0

G2(r, r, t)

t (ln ts)2
dt dr .

In view of (27) it suffices to show that the integral

∫ e−1/2s−1

0

K0(tr) (I0(tr) + βs(t)K0(tr))

t (ln ts)2
dt (32)

is uniformly bounded for all s > 0 and r ≥ s. The substitutions r = sy, t = τ/s transform (32)
into

g(y) :=

∫ e−1/2

0

K0(τy) (I0(τy) + β1(τ)K0(τy))

τ (ln τ)2
dτ , y ∈ [1,∞) . (33)

Since g is continuous, due to the continuity of Bessel functions, and g(1) = 0, it is enough to check
that g(y) remains bounded as y → ∞. Moreover, the inequality

(u, (h2,0 + t1)
−1 u) ≤ (u, (h2,0 + t2)

−1 u) ∀ 0 ≤ t2 ≤ t1 , ∀u ∈ L2(s,∞)

shows that G2(r, r, t), the diagonal element of the integral kernel of (h2,0 + t2)−1, is non increasing
in t for each r ≥ s. Equations (27) and (29) then imply

∫ y−1

0

K0(τy) (I0(τy) + β1(τ)K0(τy))

τ (ln τ)2
dτ ≤ ln y

∫ y−1

0

dτ

τ (ln τ)2
= 1 .

On the other hand, when τ ∈ [y−1, e−1/2], it can be seen from (23) and from the behavior of I0, K0

in the vicinity of zero, see [1], that

|K0(τy) (I0(τy) + β1(τ)K0(τy))| ≤ const

uniformly in y. Equation (31) thus yields

∑

j

Fs(µ
′
j) ≤ c3

∫ ∞

s

W (r) r dr ∀ s ∈ R+ ,

where c3 is independent of s. Together with (25), (26) and (30) this completes the proof.
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From equation (19), Lemma 1 and Lemma 2 we conclude that

∑

j

Fs(λ
P
j ) ≤ (c2 + 1) ‖V ln(|x|/s)‖L1(B(s)) + c3 ‖V ‖L1(R2) .

Let us now turn to the second term on the r.h.s. of (17). The key ingredient in estimating this
contribution will be the result of [6]. We make use of the estimate

∑

j

Fs(λ
Q
j ) ≤ N (0, Q(−∆− (1 + a) V )Q)

and of the Hardy-type inequality

Q (−∆) Q ≥ Q
1

|x|2 Q , (34)

which holds in the sense of quadratic forms on C∞
0 (R2), see [2]. For any ε ∈ (0, 1) we thus get the

lower bound

Q (−∆ − (1 + a) V ) Q ≥ (1 − ε) Q

(

−∆ +
ε

1 − ε

1

|x|2 − 1 + a

1− ε
V

)

Q , (35)

which implies

N (0, Q (−∆− (1 + a) V ) Q) ≤ N

(

0,−∆ +
ε

1 − ε

1

|x|2 − 1 + a

1− ε
V

)

. (36)

The last quantity can be estimated using [6, Thm.1.2], which says that

N

(

0,−∆ +
ε

1 − ε

1

|x|2 − 1 + a

1− ε
V

)

≤ c̃p ‖V ‖L1(R+,Lp(S1)) . (37)

for some constant c̃p that also depends on ε and a. In order to conclude the proof of (8) we note
that by the Hölder inequality

‖V ‖L1(R2) ≤ const ‖V ‖L1(R+,Lp(S1)) .

To show that the quadratic form (6) is semi-bounded from below we note that inequality (8)
says that there are only finitely many eigenvalues of −∆ − V below −e−1 s−2. Let −ΛV be the
minimum of those. Then

QV [u] ≥ −ΛV ‖u‖L2(R2) ∀u ∈ C∞
0 (R2) .

The proof of Theorem 1 is now complete.

Remark 4. As a corollary of the proof of Theorem 1 we immediately obtain

N(0,−∆− V ) ≤ 1 + const
(

‖V ln |x|‖L1(R2) + ‖V ‖L1(R+,Lp(S1))

)

, (38)

which agrees with [11, Thm.3].

Remark 5. Lieb-Thirring inequalities for the operator h = h0 − W in the form

tr (h0 − W )γ
− ≤ Cγ,a

∫

R+

W (r)
γ+ 1+a

2

+ ra dr, γ > 0 , a ≥ 1

have been recently established in [4].
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4 Applications

In this section we consider a model of quantum layers. It concerns a conducting plate Ω =
R2 × (0, d) with an electric potential V . We will consider the shifted Hamiltonian

HV = −∆Ω − V − π2

d2
in L2(Ω) , (39)

with Dirichlet boundary conditions at ∂Ω, which is associated with the closed quadratic form

∫

Ω

(

|∇u|2 − V |u|2 − π2

d2
|u|2

)

dx on H1
0 (Ω) . (40)

We assume that for each x3 ∈ (0, d) the function V (· , ·, x3) satisfies Assumption A. Without loss
of generality we assume that V ≥ 0, otherwise we replace V by its positive part.
The essential spectrum of the Operator HV covers the half line [0,∞). Let us denote by −λ̃j the
non decreasing sequences of negative eigenvalues of HV . For the sake of brevity we choose s = 1
and prove

Theorem 2. Assume that V ∈ L3/2(Ω) and that

Ṽ (x1, x2) =
2

d

∫ d

0

V (x1, x2, x3) sin2
(π x3

d

)

dx3

satisfies the assumptions of Theorem 1 for some p > 1. Then there exist positive constants
C1, C2, C3(p) such that

∑

j

F1(λ̃j) ≤ C1 ‖Ṽ ln(x2
1 + x2

2)‖L1(B(1)) + C3(p) ‖Ṽ ‖L1(R+,Lp(S1))

+ C2‖V 3/2‖L1(Ω) . (41)

Remark 6. Notice that (41) has the right asymptotic behavior in both weak and strong coupling
limits. Namely, in the weak coupling limit the r.h.s. is dominated by the term linear in V , while
in the strong coupling limit prevails the term proportional to V 3/2. In this sense our result is
similar to the Lieb-Thirring inequalities on trapped modes in quantum wires obtained in [5].

Proof of Theorem 2. Let νk = k2π2/d2, k ∈ N be the eigenvalues of the Dirichlet Laplacian on
(0, d) associated with the normalized eigenfunctions

φk(x3) =

√

2

d
sin

(

k πx3

d

)

.

Moreover, define
R = (φ1, ·) φ1, S = I − R .

By the same variational argument used in the previous section we obtain the inequality

HV ≥ R (−∆Ω − ν1 − 2V ) R + S (−∆Ω − ν1 − 2V ) S . (42)

The latter implies

∑

j

F1(λ̃j) ≤
∑

j

F1(µ̃j) + N(0, S (−∆Ω − ν1 − 2V ) S) , (43)

where −µ̃j are the negative eigenvalues of R (−∆Ω − ν1 − 2V ) R. Since

R (−∆Ω − ν1 − 2V ) R = (−∂2
x1

− ∂2
x2

− 2Ṽ ) ⊗ R ,
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the first term on the r.h.s. of (43) can be estimated using (8) as follows:

∑

j

F1(µ̃j) ≤ C1 ‖Ṽ1 ln(x2
1 + x2

2)‖L1(R2) + C3(p) ‖Ṽ ‖L1(R+,Lp(S1)) . (44)

As for the second term, we note that

S (−∂2
x3

− ν1) S =

∞
∑

k=2

(νk − ν1) (φk , ·) φk ≥
∞
∑

k=2

ν2 − ν1

ν2
νk (φk, ·) φk

=
3

4
S (−∂2

x3
) S

holds true in the sense of quadratic forms on C∞
0 (0, d), which implies the estimate

S (−∆Ω − ν1 − 2V ) S ≥ 3

4
S

(

−∆Ω − 8

3
V

)

S .

Using the variational principle and the Cwickel-Lieb-Rosenblum inequality, [3, 7, 9], we thus arrive
at

N(0, S (−∆Ω − ν1 − 2V ) S) ≤ N

(

0, −∆Ω − 8

3
V

)

≤ C2

∫

Ω

V 3/2 .

In view of (43) this concludes the proof.
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