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1. Setting of the Problem. Lieb-Thirring bounds.

Let
H(V ) = (−∆)l − V (x), l > 0, x ∈ Rd,

be a Schrödinger type operator of order 2l on L2(Rd). For suitable potential wells −V (x) ≤ 01

the spectrum of H(V ) consists of an essential part σess(H(V )) = [0,+∞) and of negative
eigenvalues −λj(V ). We number these eigenvalues in increasing order counting multiplicities
and study the sums

Sd,γ(V ) =
∑
j

λγj = Tr (H(V ))γ− , γ ≥ 0 .

For γ = 0 these spectral averages are understood as the counting function for the negative
eigenvalues of H(V ). The Lieb-Thirring estimates

Sd,γ(V ) ≤ R(d, γ, l)Scl
d,γ(V ) (1)

compare the spectral quantities Sd,γ(V ) with the classical phase space averages

Scl
d,γ(V ) =

∫∫
Rd×Rd

(|ξ|2l − V (x))−
dxdξ

(2π)d
= Lcl

d,γ,l

∫
Rd
V γ+κ(x)dx ,

where

Lcl
d,γ,l =

γΓ(γ)Γ(κ + 1)

2dπ
d
2 Γ(d2 + 1)Γ(κ + γ + 1)

and κ = κ(d, l) =
d

2l
.

Put γcr = 1− κ. The bound (1) holds true for all V ∈ Lγ+κ(Rd), if and only if

γ ≥ γcr for dimensions d < 2l , (2)

γ > γcr = 0 for the dimension d = 2l , (3)

γ ≥ 0 for dimensions d > 2l . (4)

The cases l = 1 and γ > 0 for d ≥ 2 or γ > 1
2 for d = 1 respectively, have been settled

in the original paper [1]. Their method extends immediately to arbitrary l > 0 for all γ >
max{0, γcr}. The important special case γ = 0 for d > 2l has been solved in [2] (for l = 1),
in [3, 4] (for l ∈ N) and in [5]. The techniques in the latter paper apply for all l > 0. The
case γ = γcr > 0 for d < 2l has been proven in [6] for l = 1 and in [7] for l ∈ N. In view of a
remark by Simon [8] these methods extend actually to all l > 0 [9].

It has also been shown that for l ∈ N in the case of d < 2l for 0 < γ ≤ γcr and for γ = 0 if
d = 2l a reverse bound

Sd,γ(V ) ≥ R̃(d, γ, l)Scl
d,γ(V ) (5)

holds true for all 0 ≤ V ∈ Lγ+κ(Rd) with suitable positive constants R̃(d, γ, l), see [10] for
d = l = 1, γ = γcr and [11] for d = l = 1, γ < γcr, as well as [7] for l ∈ N and 0 < γ = γcr
and [12] for l ∈ N and 0 < γ < γcr. The subtle case γ = γcr = 0 has been settled in [13].
As a consequence for l ∈ N, γ = γcr > 0 and all non-negative V ∈ L1(Rd) one has actually a
two-sided bound

R̃(d, γcr)Scl
d,γcr(V ) ≤ Sd,γcr(V ) ≤ R(d, γcr)Scl

d,γcr(V ) (6)

with some positive R̃(d, γcr).
For non-integer l > 0 and 0 ≤ γ ≤ γcr the validity of (5) - and hence the validity of the

lower bound in (6) - remains open so far.

1For simplicity we assume throughout the paper that V (x) ≥ 0 unless explicitely stated otherwise.
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2. Sharp Lieb-Thirring constants

We turn now to the optimal values of the constants R(d, γ, l) in (1). The discussion of these
quantities is governed by two basic facts: Namely, for fixed d and l the functions R(d, γ, l) are
non-increasing in γ and, moreover, R(d, γ, l) ≥ 1. The first observation is due to Aizenman
and Lieb [14], the second one is an immediate consequence of the large coupling asymptotics
2

Sd,γ(αV ) = (1 + o(1))Scl
d,γ(αV ) as α→ +∞ . (7)

Hence, if we have R(d, γ0, l) = 1 for some value γ0, then for this dimension d it also holds
R(d, γ, l) = 1 for all γ ≥ γ0. Similary, one has R̃(d, γ, l) ≤ 1 for all 0 < γ ≤ γcr. Note that
the Aizenman-Lieb trick does not work downwards for the lower bounds.

The sharp values of R(d, γ, l) are known only in the following two cases

R

(
1,

1
2
, 1
)

= 2 and R (d, γ, 1) = 1 for all γ ≥ 3
2
, d ∈ N . (8)

In the first case l = d = 1 and γ = γcr = 1
2 the constant R

(
1, 1

2 , 1
)

= 2 corresponds to the
asymptotic behaviour of the weak coupling bound state. Indeed, for smooth and compactly
supported V ≥ 0 one has exactly one negative eigenvalue for all sufficiently small α > 0 and
(see [15])

S1, 1
2
(αV ) = (1 + o(1))Scl

1, 1
2

(αV ) as α→ +0 .

By scaling this corresponds to the fact that the constant R
(
1, 1

2 , 1
)

= 2 is “achieved” for the
Delta potential V = δ(x − x0). This case has been settled in [16]. The second case in (8)
corresponds to the large coupling Weyl formula (7). This result has been obtained for the
one-dimensional case in [1, 14] and for arbitrary dimensions in [17].

In fact, for l = d = 1 and γ = γcr = 1
2 the Weyl formula is sharp for the lower bound.

That means R̃
(
1, 1

2 , 1
)

= 1 and the two-sided estimate takes the form

Scl
1, 1

2

(V ) ≤ S1, 1
2
(V ) ≤ 2Scl

1, 1
2

(V )

for all 0 ≤ V ∈ L1(R).
There are various non-sharp upper and lower bounds on the constants R(d, γ, 1). In par-

ticular, one has 1 < R(d, γ, 1) for all γ < 1 [18]. Moreover, R(d, γ, 1) ≤ 2 for 1
2 ≤ γ < 1 [19]

and R(d, γ, 1) ≤ 1.814 for 1 ≤ γ < 3
2 [20, 21] as well as R(2, 1, 1) > 1 and R(1, γ, 1) > 1 for

1
2 ≤ γ <

3
2 [1, 22].

Much less is known on the values of R(d, γ, l) for l 6= 1. Not only is there no single case
where the sharp value has been established, even natural conjectures based on the case l = 1
seem to fail. For example, in the critical case γ = γcr = 1

2 for d = l = 1 the sharp constant
corresponds to the weak coupling behaviour or equivalently the Delta potential. Since for
γ = γcr > 0 the weak coupling ground state exists and satisfies [7]

Sd,γcr(αV ) = (1 + o(1))τ(d, l)Scl
d,γcr(αV ) as α→ +0 ,

2This Weyl type formula can be verified by standard methods for sufficiently regular potentials. In all
cases when (1) holds true, the asymptotic formula extends to all potentials with finite phase space average

Scl
d,γ(V ).Further below we shall also mention some examples of potentials V with finite Scl

d,γ(V ), where both

(1) and (7) fail.
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where τ(d, l) = π d
2l

sin(π d2l)
> 1. It seems reasonable to conjecture that R(d, γcr, l) = τ(d, l).

This hypothesis fails. Indeed, in [23] it has been shown, that for l ∈ N and non-trivial,

sufficiently regular V ≥ 0 the operator H(V ) has exactly m(d, l) =
(l+[ d2 ]

d

)
weak coupling

states. Since for weak coupling the higher states do all vanish with higher order in the coupling
parameter than the ground state, this does not immediately imply a counter example. But
on a closer look one can construct even for d = 1 and l = 2 a two Delta potential for
which S1, 3

4
(V ) > τ(1, 2)Scl

1, 3
4

(V ). For that end one starts with a single Delta potential. Since
the corresponding ground state of a 4th order operator changes sign, one can add a second
Delta function in the nodal point of the ground state to the potential - and therefore a
second negative eigenvalue to the operator - not spoiling the first one. A subtle play with the
coupling yields the counter example which is essentially based on the presence of two negative
eigenvalues [24]. Therefore it seems reasonable to put forward a modified working conjecture
that for γcr > 0 one has R(d, γcr, l) = τ(d, l) if and only if m(d, l) = 1 and R(d, γcr, l) > τ(d, l)
otherwise.

3. Further developments

Although the knowledge on sharp constants is now about the same as in the year 2000, the
subject sparked quite a substantial amount of work on semiclassical spectral estimates during
the past decade. Let me just mention a few important directions, which shall however not be
discussed in detail below.

Let me first mention the amazing observation, that for l = 1 and γ ≥ 2 the ratio
Sd,γ(αV )/Scl

d,γ(αV ) is monotone increasing in α [25, 26]. Therefore, the proof of the Lieb-
Thirring bound and the estimate for the corresponding constant can be pushed into the
semiclassical limit. This is the first approach to sharp constants, which is directly applicable
to higher dimensions and does not reduce the problem to a one-dimensional setting.

In [20, 21] techniques of mass transport have been applied to claim improved estimates on
R(d, 1, 1). Moreover, in [27] a beautiful connection between estimates on R(d, 1, 1) and the
so-called loop conjecture have been found.

A third line of work concerns improved Lieb-Thirring estimates with additional Hardy type
terms [28, 29, 30].

Finally one should mention Lieb-Thirring estimates on graphs [31] and on metric trees
[32, 33].

4. Logarithmic Lieb-Thirring estimates

We turn now to the case d = 2l, l ∈ N and γ = γcr = 0. As mentioned above, in [13] the
estimate (5) from below has been established, while the corresponding bound (1) from above
fails. To see the latter fact one usually makes the following point: For d = 2l the operator
H(αV ) has for any nontrivial V ≥ 0 and any α > 0 at least one negative bound state and
S0,d(αV ) ≥ 1, while at the same time Scl

0,d(αV ) → 0 as α → +0. Therefore (1) must fail for
γ = γcr = 0 as α → +0. This argument, although true of course, shows only a part of the
full story. In fact, for γ = γcr = 0 the bound (1) may fail even in the large coupling limit.
Put l = 1, d = 2l = 2 and for p > 1 consider the potentials

V (∞)
p (r) =

χr>e2(r)

r2| ln r|2| ln | ln r||
1
p

and V (0)
p (r) =

χr<e−2(r)

r2| ln r|2| ln | ln r||
1
p

, r = |x| .
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Note that V (∞)
p , V

(0)
p ∈ L1(R2) and therefore both Scl

0,2(αV (∞)
p ) ∼ α and Scl

0,2(αV (0)
p ) ∼ α for

α→ +∞. On the other hand it turns out that we have a non-Weyl high coupling asymptotics

S0,2(αV (∞)
p ) ∼ αp and even S0,2(αV (0)

p − C) ∼ αp as α→ +∞

for any C ≥ 0, see [34, 35]. Hence, for p > 1 even a modified estimate S0,2(αV (0)
p − C1) ≤

C2 + C3S
cl
0,2(αV (0)

p ) fails for arbitrary Cj > 0.
In search for a replacement of a critical Lieb-Thirring bound for d = 2 and l = 1 one can

now look on the weak coupling behaviour. Indeed, for sufficiently regular V one has again
exactly one weak coupling state −λ1(αV ) satisfying

4π
| lnλ1(αV )|

= (1 + o(1))α
∫

R2

V dx = (1 + o(1))CScl
0,2(αV ) as α→ +0.

This motivates to study sums
∑

j Fs(λj(V )), where

Fs(t) =
1

| ln ts2|
as 0 < t ≤ 1

es2
and Fs(t) = 1 for 0 <

1
es2

< t .

Note that Fs(0+) = 0 and the weak coupling result reads as follows

Fs(κ1(αV )) ∼ α

4π

∫
V (x)dx as α→ +0 .

This supports the goal to estimate
∑

j Fs(λj) by a term proportional to
∫
V (x)dx. On the

other hand, for large t the function Fs(t) coincides with the counting function and for V = V
(0)
p

as above we find∑
j

Fs(λj(αV (0)
p )) ≥ S0,2

(
αV (0)

p − 1
es2

)
∼ αp as α→ +∞.

Hence, a straightforward bound of
∑

j Fs(λj(αV )) by α
∫
V dx = CScl

0,2(αV ) is not possible.
Our main result is as follows (joint work with H. Kovař́ık and S. Vugalter [36]):

Theorem 4.1. Put d = 2, l = 1 and V ≥ 0. Then for any p > 1 and s > 0 it holds∑
j

Fs(λj) ≤ c1

∫
|x|<s

V (x)| ln |x|s−1|dx+ cp

∫ +∞

0
rdr

(∫ 2π

0
|V (r, θ)|pdθ

)1/p

,

where the constants c1 and cp are independent of s and V . If V is spherical symmetric, then
there exists a constant c0, such that∑

j

Fs(λj) ≤ c1

∫
|x|<s

V (x)| ln |x|s−1|dx+ c0‖V ‖L1(R2) .

The r.h.s. of these bounds is homogeneous of degree 1 in V , cf. also [37, 38, 39]. Hence, it
reflects the (standard) correct order of the l.h.s. in the weak as well as in the strong coupling
limit. Moreover, the finiteness of the r.h.s. fails for potentials V = V

(0)
p . and excludes non-

Weyl asymptotics of deep eigenvalues. On the other hand, the theorem allows for potentials
V = V

(∞)
p . The non-Weyl asymptotics of the number of negative eigenvalues is compensated

by the fact that these eigenvalues stay mainly close to the origin. In fact, the theorem gives
estimates on the rate of accumulation of these eigenvalues.

It remains as an open question, whether a similar bound holds true for l = 1/2 in the
dimension d = 1, or in general for l = d/2.
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5. Setting of the problem: Berezin-Li-Yau inequalities

Let Ω ⊂ Rd be an open domain. We consider −∆Ω
D on L2(Ω) with Dirichlet boundary

conditions at ∂Ω defined in the form sense.3 We assume the spectrum of −∆Ω
D to be discrete,

e.g. Ω is of finite volume, and denote by

0 < λ1(Ω) ≤ λ2(Ω) ≤ λ3(Ω) ≤ · · ·
the ordered sequence of the eigenvalues counting multiplicities. Let

n(Ω,Λ) := #{λj(Ω) < Λ} , Λ > 0,

denote the counting function of this spectrum. Along with the counting function we study
the spectral averages

Sd,γ(Ω,Λ) =
∑
n

(Λ− λn)γ+ = γ

∫ Λ

0
(Λ− τ)γ−1n(Ω, τ)dτ , Λ ≥ 0, γ > 0.

and

sd,γ(Ω, N) =
N∑
k=1

λγk = γ

∫ ∞
0

τγ−1(N − n(Ω, τ))+dτ , γ > 0.

In 1912 Weyl proved [40] that for high energies the counting function behaves asymptotically
as the corresponding classical phase space volume

n(Ω,Λ) = (1 + o(1))ncl(Ω,Λ) as Λ→ +∞,
where

ncl(Ω,Λ) =
∫
x∈Ω

∫
ξ∈Rd:|ξ|2<Λ

dx · dξ
(2π)d

=
ωd

(2π)d
vol(Ω)Λd/2 = Lcld,0vol(Ω)Λd/2 .

Here ωd stands for the volume of the unit sphere in Rd. This formula holds for all domains
with finite volume, see also [41]. An integration of this asymptotics gives

Sd,γ(Ω,Λ) = (1 + o(1))γ
∫ Λ

0
(Λ− τ)γ−1 ωd

(2π)d
vol(Ω)τd/2dτ

= (1 + o(1))Scld,γ(Ω,Λ) as Λ→ +∞
with the corresponding classical phase space average

Scld,γ(Ω,Λ) :=
∫
x∈Ω

∫
ξ∈Rd

(Λ− |ξ|2)γ+
dx · dξ
(2π)d

= Lcld,γvol(Ω)Λγ+d/2 ,

Lcld,γ :=
Γ(γ + 1)

2dπd/2Γ(1 + γ + d/2)
= γB

(
γ, 1 +

d

2

)
Lcld,0 .

Analogously it holds

sd,γ(Ω,Λ) = (1 + o(1))γ
∫ ∞

0
τγ−1

(
N − Lcld,0vol(Ω)τd/2

)
+
dτ

= (1 + o(1))scld,γ(Ω, N) as N → +∞ ,

scld,γ(Ω, N) = c(d, γ) (vol(Ω))−
2γ
d N1+ 2γ

d ,

3From now on we put always l = 1 and drop it from the corresponding notation. In particular, Lcl
d,γ = Lcl

d,γ,1.
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with the asymptotical constant

c(d, γ) :=
2γ
d

(
Lcld,0

)− 2γ
d
B

(
2γ
d
, 2
)

=
d

2γ + d

(
Lcld,0

)− 2γ
d
.

6. Pólya-Berezin-Lieb-Li-Yau bounds

Again, the semiclassical quantities serve as universal bounds for the corresponding spectral
quantities of the Dirichlet Laplacian. In particular, for arbitrary d ∈ N and γ ≥ 0 it holds
true:

n(Ω,Λ) ≤ r(d, 0)ncl(Ω,Λ) , Λ > 0 , (9)

Sd,γ(Ω,Λ) ≤ r(d, γ)Scld,γ(Ω,Λ) , Λ > 0 , (10)

sd,γ(Ω, N) ≥ ρ(d, γ)scld,γ(Ω, N) , N ∈ N . (11)

Here, of course, we have n(Ω,Λ) = Sd,0(Ω,Λ) and ncl(Ω,Λ) = Scld,0(Ω,Λ). In fact, the bounds
(9)-(10) can formally be seen as a special case of (1) for potentials V (x) = Λ for x ∈ Ω and
V (x) = −∞ otherwise. In particular, the bound (9) for d ≥ 3 follows from [5, 3, 4, 2], paper
[2] covers also the estimate (9) for d = 2.

But since in this special case the inequalities (9)-(10) hold true for all pairs γ, d with more
subtle information on the constants involved, they are usually studied with separate methods.
Let us point out the following known information on the constants r and ρ:

1 ≤ r(d, 0) ≤ (1 + 2d−1)d/2 (12)
r(d, γ) = 1 for γ ≥ 1, (13)
ρ(d, γ) = 1 for γ ≤ 1. (14)

The bound (10) with the constant (13) ist due to Berezin [42]. The estimate (11) with (14)
has been proven independently by Li any Yau [43]. It also follows from (10) and (13) via
Legendre transformation. Both results imply (9) with the upper bound from (12), see also
[44].

Pólya proved with a really beautiful argument that r(d, 0) = 1 for tiling domains [45] and
conjectured that in fact

r(d, 0) = 1 holds true for arbitrary domains.

Pólya’s conjecture remains open so far for general domains, even for the circle! For some
generalizations of Pólyas result to product type domains see [44].

7. Pólya’s conjecture in the presence of magnetic field

It is an admissible approach in mathematics to learn more abount an interesting but difficult
problem by stuying modifications of the original setting. Here we shall include a magnetic
field: Let A(x) be a real-valued vector field and consider the magnetic Laplacian

(i∇+A(x))2
D,Ω

on Ω ⊂ Rd with Dirichlet boundary conditions at ∂Ω. To distinguish the magnetic case we
shall simply enter A into the notations introduced above.
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This modification is motivated by the following observations. Firstly, the inclusion of a
magnetic field does not change the phase space volume. Secondly, it is known that if A
induces a constant magnetic field, then[46]

Sd,γ(Ω,Λ;A) ≤ Scld,γ(Ω,Λ),

for all γ ≥ 1. Moreover, if we restrict ourselves to γ ≥ 3
2 then this result extends to arbitrary

magnetic fields A (with sufficient regularity to define the magnetic operator in the usual
form sense) [17]. In both cases the presence of the magnetic field does not spoil neither the
inequality nor the sharp value of the constant therein. Therefore it seems reasonable to ask,
whether this behaviour extends to the case γ < 1 and, in particular, to the case of Pólya’s
conjecture γ = 0.

Our main result disproves Pólya’s conjecture in the presence of a magnetic field (joint work
with R. Frank and M. Loss [47]):

Theorem 7.1. Put d = 2 and let A = B
2 (x2,−x1) induce a constant magnetic field B. Then

there exist constants Rγ independent of B, such that

S2,γ(Ω,Λ,A) ≤ RγScl2,γ(Ω,Λ), 0 ≤ γ < 1,

where the optimal value of the B-independent constant Rγ is given by

Rγ = 2
(

γ

1 + γ

)γ
> 1 for 0 ≤ γ < 1 .

The constant Rγ cannot be improved - not even for tiling domains! The example is provided
on squares balancing the size of the square with the strength of the magnetic field in a suitable
way.

An immediate lesson from this result is that one cannot prove Pólya’s original conjecture
by methods which extend to the magnetic case. A second lesson is that Pólya’s proof is in
fact not so much about phase space volume but about the density of states. Indeed, if one
allows for B-dependent estimates, then for 0 ≤ γ < 1, A = B

2 (x2,−x1) and tiling Ω it holds
[47]

S2,γ(Ω,Λ,A) ≤ Bγ(B,Λ)vol(Ω) , Bγ(B,Λ) =
B

2π

∑
k≥0

(Λ−B(2k + 1))γ+ , (15)

and the constants Bγ(B,Λ) are sharp. For γ = 0 the quantity B0(B,Λ) is just the density
of states of the Landau Hamiltonian!

It remains open, whether an estimate (15) holds true for general domains.

8. Two-term spectral bounds

Weyl conjectured also a two-term asymptotical formula for the counting function

n(Ω,Λ) = Lcld,0vol(Ω)Λd/2 − 1
4
Lcld−1,0|∂Ω|Λ(d−1)/2 + o(Λ(d−1)/2) as Λ→ +∞.
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Here the first term on the r.h.s. equals ncl(Ω,Λ). This formula holds true under certain
geometrical conditions on the domain [48]. Integrating this asymptotic formula gives

Sd,γ(Ω,Λ) = Lcld,γvol(Ω)Λγ+d/2 − 1
4
Lcld−1,γ |∂Ω|Λγ+(d−1)/2 + o(Λγ+(d−1)/2),

sd,γ(Ω, N) = c(d, γ) (vol(Ω))−
2γ
d N1+ 2γ

d

+
Lcld−1,γ(Lcld,γ)−1− 2γ−1

d

4(d−1
2 + γ)

· γ|∂Ω|
(vol(Ω))1+ 2γ−1

d

N1+ 2γ−1
d + o(N1+ 2γ−1

d ) .

Again, the first terms on the r.h.s. equal Scld,γ(Ω,Λ) and scld,γ(Ω, N), respectively. At least for
γ ≥ 1 the geometrical conditions on the domain Ω can largely be dropped [49].

Note that the signs of the lower order terms seem to suggest, that the spectral bounds
(10)-(11) with sharp first order Weyl term (13)-(14) could possibly be improved by additional
terms reflecting the second order corrections.

Trying to prove such bounds one should first note that any bound

Sd,γ(Ω,Λ) ≤ Scld,γ(Ω,Λ)− C · |∂Ω|Λγ+ d−1
2

must fail in general. Indeed, adding ”needles” to a domain Ω one can increase the perimeter
|∂Ω| arbitrarily without changing the volume of Ω a lot, and the r.h.s. of this bound would
turn even negative. Therefore, part of the problem is to replace |∂Ω| by some other suitable
geometric value.

9. Melas’ bound

A first step towards this direction was made by Melas [50]. Let for an open domain Ω ⊂ Rd

J(Ω) = min
y∈Rd

∫
Ω
|x− y|2dx

be its moment. Then the following bound holds true

sd,1(Ω, N) ≥ c(d, 1) (vol(Ω))−
2
d N1+ 2

d +M(d)
vol(Ω)
J(Ω)

N . (16)

Via Legendre transformation this turns into [51]

Sd,1(Ω,Λ) ≤ Scld,1
(

Ω,Λ−Md
vol(Ω)
J(Ω)

)
. (17)

This bound is remarkable, since it works at the endpoint γ = 1 of the scale, where the Li-Yau
and the Berezin bounds are proven with sharp semiclassical constants. On the other hand,
the correction term of order O(N) is not of the expected order O(N1+ 1

d ). The same holds in
the Berezin picture (17).

10. Improved Berezin bounds with remainder terms of correct order

Consider an open domain Ω ⊂ Rd. Choose a coordinate system in Rd and put Rd 3 x =
(x′, xd) ∈ Rd−1 × R. For fixed x′ ∈ Rd−1 the intersection of {(x′, t), t ∈ R} ∩ Ω consists of
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at most countable many intervals. Let ΩΛ(x′) be the union of all such intervals, which are
longer than lΛ := πΛ−1/2. The number of these intervals is denoted by κ(x′,Λ). Put

ΩΛ =
⋃

x′∈Rd−1

ΩΛ(x′) ⊂ Ω and dΛ(Ω) =
∫
x′∈Rd−1

κ(x′,Λ)dx′ .

That means ΩΛ is the subset of Ω, where the intervals of Ω in xd-direction are longer than lΛ.
The set ΩΛ is increasing in Λ. The value dΛ(Ω) is an effective measure of the projection of
ΩΛ on the x′-plane counting the number of sufficiently long intervals. It also increases in Λ.
Since vol(ΩΛ) ≥ lΛdΛ(Ω), the finiteness of vol(ΩΛ) implies finiteness of dΛ(Ω). It holds [52]

Theorem 10.1. Assume that for a given Λ > 0 we have vol(ΩΛ) <∞. Then for any γ ≥ 3
2

Sd,γ(Ω,Λ) ≤ Lcld,γvol(ΩΛ)Λσ+ d
2 − ν(d, γ)4−1Lcld−1,γdΛ(Ω)Λσ+ d−1

2 . (18)

The first term on the r.h.s. coincides with Scld,γ(ΩΛ; Λ), while the correction term is of the

expected second Weyl order O(Λσ+ d−1
2 ). But even the first term is already an improvement

over the standard Berezin bound for γ ≥ 3
2 . Indeed, instead of vol(Ω) only the quantity

vol(ΩΛ) appears: The bound counts only the volume of the part of the domain, where it is
wide enough for sufficiently deep bound states to settle. In particular, one can apply (18)
even for domains Ω of infinite volume as long as vol(ΩΛ) is finite. Moreover, the bound (18)
extends to the case of arbitrary magnetic fields. However, the techniques applied (sharp Lieb-
Thirring inequalities with operator-valued potentials) restrict ourselfs to the case γ ≥ 3

2 . It
would be of great interest to extend this type of results, both regarding the effective reduction
of the domain to ΩΛ as well as the appearance of a second order term, to the case γ = 1. 4

One can also supply explicite estimates on the constants ν(d, γ). Namely, we have

0 < 4ε
(
γ +

d− 1
2

)
≤ ν(d, γ) ≤ 2 ,

where

ε(σ) = inf
a≥1

a
2
B

(
σ + 1,

1
2

)
−
∑
k≥1

(
1− k2

a2

)σ
+

 .

In particular, it holds [54] ε(σ) = 1
2B
(
σ + 1, 1

2

)
for σ ≥ 3, and a numerical evaluation gives

for the special case d = 2 and γ = 3
2

1.91 < ν

(
2,

3
2

)
≤ 2 .

For further applications of (18) to bounds for the heat kernel of the Dirichlet Laplacian see
[54].

11. A more geometric second term

The bound (18) as stated above is of particular use, if the domain streches along one
distinguished direction, like horn shaped domains, see [54]. Otherwise one would wish for a
more intrinsic geometrical second term, which is independent of the choice of the coordinate
system. Of course, one can average (18) over all directions, but this does not necessarily yield
a more appealing bound.

4Such an estimate has been obtained for the discrete Laplacian in [53].
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Alternatively, one can “hide” the correction first in a Hardy type term and average after-
wards. Indeed, for any u ∈ Sd−1 and γ ≥ 3/2 one can prove (joint work with L. Geisinger
and A. Laptev [55]) that

Sd,γ(Ω,Λ) ≤ Lcld,γ

∫
Ω

(
Λ− 1

4 d(x, u)2

)γ+ d
2

+

dx ,

where

θ(x, u) = inf {t > 0 : x+ tu /∈ Ω} and d(x, u) = inf{θ(x, u), θ(x,−u)} .

Averaging over the directions gives now rise to the following result. For x ∈ Ω let

Ω(x) = {y ∈ Ω : x+ t(y − x) ∈ Ω , ∀ t ∈ [0, 1]}

be the part of Ω that ”can be seen” from x and let δ(x) = inf
{
|y − x| : y /∈ Ω(x)

}
denote

the distance to the exterior of Ω(x). For fixed ε > 0 put

Aε(x) =
{
a ∈ Rd \ Ω(x) : |x− a| < δ(x) + ε

}
and for a ∈ Aε(x) set Bx(a) = {y ∈ Rd : |y − a| < |x− a|} and

ρa(x) =
|Bx(a) \ Ω(x)|
ωd|x− a|d

,

where ωd denotes the volume of the unit ball in Rd. Moreover, we put

ρ(x) = inf
ε>0

sup
a∈Aε(x)

ρa(x) and MΩ(Λ) =
∫
RΩ(Λ)

ρ(x) dx ,

where RΩ(Λ) ⊂ Ω denotes the set {x ∈ Ω : δ(x) < 1/(4
√

Λ)}. The function ρ(x) depends
on the behaviour of the boundary close to x ∈ Ω. For example, ρ(x) is small close to a cusp.
On the other hand ρ(x) is larger than 1/2 in a strictly convex domain. By definition, the
function MΩ(Λ) gives an average of this behaviour over RΩ(Λ), which is like a tube of width
1/(4
√

Λ) around the boundary. Its decay for λ → ∞ is related to the Minkowski dimension
of the boundary.

The following result allows a geometric interpretation of the remainder term (joint work
with L. Geisinger and A. Laptev [55]):

Theorem 11.1. Let Ω ⊂ Rd be an open set with finite volume and γ ≥ 3/2. Then

Sd,γ(Ω,Λ) ≤ Lcld,γ vol(Ω)Λ
d
2

+γ − Lcld,γ 2−d+1 Λ
d
2

+γMΩ(Λ) for all Λ > 0 . (19)

12. Improving Melas’ bound

As stated above, it is of interest to transfer Berezin-Li-Yau bounds with remainder terms
of sharp order to the limit case γ = 1 when the first term with sharp constant is known. To
understand the difficulties let us have a look on the idea behind the proof of the Li-Yau and
Melas inequalities.

Let ψj be the o.n. eigenfunctions of −∆D
Ω . Put ψ̂j(ξ) = (2π)−d/2(ψj , eiξx)L2(Ω) and F (ξ) =∑N

j=1 |ψ̂j(ξ)|2 ≥ 0. Then
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sd,1(Ω, N) =
∫

Rd
|ξ|2F (ξ)dξ = I(F ) (20)

N =
∫
F (ξ)dξ, (21)

F (ξ) =
N∑
j=1

|ψ̂j(ξ)|2 ≤ (2π)−d‖eiξx‖2L2(Ω) = (2π)−dvol(Ω) . (22)

An estimate on sd,1(Ω, N) =
∑N

j=1 λj from below can be obtained minimizing I(F ) in (20)
for F ≥ 0 satisfying (21) and (22). A minimizer should be spherical symmetric and non-
increasing in the radius and a straightforward application of the bathtub principle leads to
the Li-Yau bound with ρ(d, 1) = 1. Using the momentum of the domain Melas puts forward
the additional information |∇F | ≤ 2(2π)−d

√
J(Ω)vol(Ω). Solving the modified optimization

problem leads to his improvement of the bound (16). A quite similar approach has recently
been applied in [56, 57] for the Stokes and the Klein-Gordon operator.

But this idea will not yield remainder terms of sharp order. In fact, the true second Weyl
term is hidden in Bessel’s inequality (22). To quantify it, one has to show that lower Dirichlet
eigenfunctions cannot approximate a free wave on the domain too well, since these eigenfunc-
tions must vanish at the boundary. For this one needs to deduce subtle pointwise estimates
on Dirichlet eigenfunctions from integral energy estimates. In contrast to the discrete case
[53] this proves to be quite difficult in the continuous case. We can provide the following
result (joint work with H. Kovař́ık and S. Vugalter [58]):

Theorem 12.1. Let Ω ⊂ R2 be a polygon with n sides. Let lj be the length of the j−th side
pj of Ω and let dj be the distance of the middle third of pj to ∂Ω \ pj. Then for any k ∈ N
and any α ∈ [0, 1] we have

s2,1(Ω, N) ≥ scl
2,1(Ω, N) +

4α c3

vol(Ω)
3
2

N
3
2
−ε(N)

n∑
j=1

lj Θ

(
N − 9vol(Ω)

2π d2
j

)

+ (1− α)M(2)
vol(Ω)
J(Ω)

N,

where

ε(N) =
2√

log2(2πN/c1)
, c1 =

√
3π
14

10−11 , c3 =
2−3

9
√

2 36
(2π)

5
4 c

1/4
1 .

Minimizing the r.h.s. in α ∈ [0, 1] this is an actual improvement on Melas’ bound which
corresponds to the case α = 0. The second term on the r.h.s. is almost of the expected Weyl
order. The result can be extended to non-polygons as well; for details see [58].
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