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ALMOST COMPLEX STRUCTURES ON QUATERNION-KÄHLER
MANIFOLDS AND INNER SYMMETRIC SPACES

Abstract. We prove that compact quaternionic-Kähler manifolds of positive scalar cur-
vature admit no almost complex structure, even in the weak sense, except for the complex
Grassmannians Gr2(Cn+2). We also prove that irreducible inner symmetric spaces M4n

of compact type are not weakly complex, except for spheres and Hermitian symmetric
spaces.

2000 Mathematics Subject Classification: Primary 32Q60, 57R20, 53C26, 53C35, 53C15.

Keywords: almost complex structure, weakly complex bundle, quaternion-Kähler mani-
fold, inner symmetric space, index of a twisted Dirac operator.

1. Introduction

It is a well-known fact that the quaternionic projective spaces HPn have no almost
complex structure. The proof goes back to F. Hirzebruch in 1953 for n ≥ 4 (cf. [12]). The
non-existence of almost-complex structure on HP1 = S4 had been established a few years
earlier by Ch. Ehresmann [10] and H. Hopf [15]. According to Hirzebruch’s lecture at the
1958 ICM [13], J. Milnor had in the meantime settled the remaining cases n = 2 and 3,
but his proof has remained unpublished. Later on, W.S. Massey [20] gave an original proof
of the non-existence of almost-complex structure on HPn, for any n, based on the explicit
calculation of the ring K(X) and of the Chern character ch(TX) for X = HPn.

Quaternionic projective spaces are particular examples of quaternion-Kähler manifolds.
These, we recall, are (oriented) 4n-dimensional Riemannian manifolds, whose holonomy
is contained in Sp(n) · Sp(1) ⊂ SO(4n), if n > 1, or, if n = 1, (oriented) Einstein, self-
dual 4-dimensional Riemannian manifolds. In all dimensions 4n, n ≥ 1, quaternion-Kähler
manifolds are Einstein and are called of positive type if their scalar curvature is positive. In
this paper, we only consider quaternion-Kähler of positive type and we implicitly assume
that they are complete, hence compact.

For n ≥ 2, the above definition of quaternion-Kähler manifolds is equivalent to the
existence of locally defined almost complex structures I, J,K, satisfying the quaternion
relations and spanning a global rank 3 sub-bundle Q ⊂ End(TM), which is preserved
by the Levi-Civita connection. Almost complex structures on M which are sections of
Q are called compatible. In [2], it is shown that quaternion-Kähler manifolds of positive
type admit no compatible almost complex structure. In particular the natural complex
structure of the complex Grassmannians Gr2(Cn+2), which constitute a well-known class
of quaternion-Kähler manifolds of positive type (cf. below), is not compatible.

The first main result of this paper is:

Date: January 11, 2011.

1



2 ALMOST COMPLEX STRUCTURES

Theorem 1.1. Let M4n, n ≥ 2, be a compact quaternion-Kähler manifold of positive type,
which is not isometric to the complex Grassmannian Gr2(Cn+2). Then M4n has no weak
almost complex structure, in the sense that the tangent bundle TM is not stably isomorphic
to a complex vector bundle.

Notice that the assumption n ≥ 2 is necessary, since HP1 = S4 is weakly complex but
not almost complex.

At the moment, the only known quaternion-Kähler manifolds of positive type are the
so-called (symmetric) Wolf spaces, namely [28]:

(i) the quaternionic projective spaces HPn = Sp(n+1)
Sp(n)×Sp(1) ,

(ii) the Grassmannians Gr2(Cn+2) = U(n+2)
U(n)×U(2)

of complex 2-planes in Cn+2,

(iii) the real Grassmannians G̃r4(Rn+4) = SO(n+4)
SO(n)×SO(4)

, of oriented real 4-planes in Rn+4,

and
(iv) the five exceptional spaces G2

SO(4)
, F4

Sp(3)Sp(1)
, E6

SU(6)Sp(1)
, E7

Spin(12)Sp(1)
, E8

E7Sp(1)
, in di-

mensions 4n with n = 2, 7, 10, 16 and 28 respectively.

According to Theorem 1.1, none of them admits a (weakly) complex structure except for the
complex Grassmannians Gr2(Cn+2). Note however that this was already known for HPn,

as mentioned above, and also for most real oriented Grassmannians G̃r4(Rn+4). Indeed,
the non-existence of (weakly) complex structures on a large class of real Grassmannians,

including all G̃r4(Rn+4) except for G̃r4(R8) and G̃r4(R10), was shown in [24] by P. Sankaran
and in [27] by Z.-Z. Tang.

Wolf spaces are (irreducible, simply-connected) inner symmetric spaces of compact type,
i.e. are symmetric spaces of the form G/H, where G,H are connected compact Lie groups
of equal rank. Apart from the Wolf spaces, the class of simply connected irreducible inner
symmetric spaces of compact type includes, cf. e.g. [11], [4], [7]:

(i) the class of (irreducible) Hermitian symmetric spaces of compact type ;

(ii) the even-dimensional spheres S2n = SO(2n+1)
SO(2n)

, n > 1 ;

(iv) the even-dimensional oriented real Grassmannians G̃r2p(Rn+2p) = SO(n+2p)
SO(n)×SO(2p)

, n >
1 ;

(v) the quaternionic Grassmannians Grk(Hk+n) = Sp(n+k)
Sp(n) Sp(k)

, n, k > 1 ;

(iii) the Cayley projective plane F4

Spin(9)
;

(vi) the two exceptional inner symmetric spaces E7

SU(8)/Z2
and E8

Spin(16)/Z2
.

Notice that all spaces in this list are even-dimensional, cf. Section 3. In the second part
of this paper, we show that the techniques introduced in the proof of our main Theorem
1.1 can be used to establish a similar non-existence theorem for inner symmetric spaces of
compact type. More precisely, we have:

Theorem 1.2. A 4n-dimensional simply connected irreducible inner symmetric space of
compact type is weakly complex if and only if it is a sphere or a Hermitian symmetric space.

Recall that, for any n, the sphere Sn is stably parallelizable, hence weakly complex,
whereas Hermitian symmetric spaces are complex manifolds in a natural way.
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Our method uses a unified argument based on the index calculation of a twisted Dirac
operator, via Theorem 3.1 and Proposition 3.2 below. On the other hand, our approach is
ineffective for non-inner symmetric spaces, due to the fact, established by R. Bott [6], that
the index of any homogeneous differential operator vanishes on any non-inner symmetric
space of compact type. For reasons which will be explained in Section 3, cf. in particular
Remarks 3.3, 3.5, 3.7, it is also ineffective for inner symmetric spaces of dimension 4n+ 2.
In the above list, these are: (i) Hermitian symmetric spaces of odd complex dimension;

(ii) oriented real Grassmannians G̃r2p(R2p+q), whith p and q both odd; (iii) the exceptional
symmetric space E7

SU(8)/Z2
(which is of dimension 70). The non-existence of weakly complex

structure for all oriented real Grassmannians, except for G̃r4(R8), G̃r6(R12) and G̃r4(R10),
in particular for all oriented real Grassmannians of dimensions 4n+ 2, was established, by
different methods, by P. Sankaran in [24] and by Z.-Z. Tang in [27]. Together with these
results, our Theorem 1.2 then covers all simply connected irreducible inner symmetric
spaces, except for the exceptional symmetric space E7

SU(8)/Z2
, for which, as far as we know,

the existence of a (weak) almost complex structure has remained an open question. Notice
that the non-existence of (weak) almost complex structure on quaternionic Grassmannians
was previously established, by a different approach, by W. C. Hsiang and R. H. Szczarba
in [16]. Note also that A. Borel and F. Hirzebruch [5] have shown that the tangent bundle
of the Cayley projective plane has no almost complex structure, but their proof does not
exclude the possibility for that bundle to being weakly complex.

The irreducibility assumption in Theorem 1.2 can easily be dropped. Indeed, the de
Rham decomposition Theorem implies that any simply connected inner symmetric space
can be written as a product of irreducible inner symmetric spaces. Using the fact that a
product M × N is weakly complex if and only if both factors are weakly complex — the
restriction of the tangent bundle of a product to each factor being stably isomorphic to
the tangent bundle of that factor — and by taking into account the above observations,
we thus obtain the following generalization of Theorem 1.2:

Theorem 1.3. The irreducible components of a simply connected inner symmetric space of
compact type admitting a weak almost complex structure are isomorphic either to an even-
dimensional sphere, or to a Hermitian symmetric space or to the exceptional symmetric
space E7

SU(8)/Z2
.

Our method gives however no information concerning the existence of genuine almost
complex structures on products of even-dimensional spheres and Hermitian symmetric
spaces (in contrast, the product S2p+1× S2q+1 of two odd-dimensional spheres admits inte-
grable almost complex structures [9]). Theorem 1.3 can be viewed as a topological version
of the well-known fact that an inner symmetric space of compact type which admits an in-
tegrable almost complex structure compatible with the invariant metric has to be Hermitian
symmetric [7], [8].

Acknowledgments. We warmly thank Claude LeBrun for communicating the reference
to Massey’s paper [20] and for a stimulating and helpful e-mail exchange. We also thank
Ulrich Bunke, Jean Lannes and Simon Salamon for useful discussions. A special thank is
due to Gregor Weingart, who informed us about the crucial Theorem 3.1, and to Dieter
Kotschick for comments which led to significant improvements of the paper.
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2. Proof of Theorem 1.1

For notation and basic properties of quaternion-Kähler manifolds we refer to [22] and
[23]. Let (M, g) be a 4n-dimensional quaternion-Kähler manifold of positive type, n ≥ 1.
Since the holonomy group of M is contained in Sp(n) ·Sp(1), the standard representations
of Sp(n) on C2n and of Sp(1) on C2 give rise to locally defined complex vector bundles,
denoted by E and H respectively. These are globally defined only on the quaternionic
projective space HPn ([22, Theorem 6.3]). However, tensor products of any even number
of copies of H and E are globally defined complex bundles over any quaternion-Kähler
manifold M .

It is well known that the complexified tangent bundle of M is given as TMC = E ⊗ H.
Recall that a quaternion-Kähler manifold M4n of positive type is spin if and only if either
M4n = HPn, or the quaternionic dimension n is even ([22, Proposition 2.3]). If this holds,
the spinor bundle ΣM decomposes as the direct sum of Rp,q := SympH ⊗ Λq

0E over all
positive integers p, q with p + q = n, cf. e.g. [18, Proposition 2.1]. Here Λq

0E denotes the
sub-bundle of ΛqE defined as the kernel of the contraction with the symplectic form of E.
In particular, the twisted spin bundles Σ±M ⊗Rp,q are globally defined whenever p+ q+n
is even. We then denote by DRp,q be the (twisted) Dirac operator defined on sections of
Σ+M ⊗ Rp,q and by ind(DRp,q) the index of DRp,q .

Our argument crucially relies on the following result of C. LeBrun and S. Salamon [19,
Theorem 5.1] (cf. also [25]):

(1) ind(DRp,q) =

{
0 for p+ q < n

(−1)q (b2q(M) + b2q−2(M)) for p+ q = n ,

where bi(M) denote the Betti numbers of M . Consider the twist bundle V = Symn−2H⊗
TMC (it is here that the assumption n ≥ 2 is needed). The Clebsch-Gordan decomposition
yields

V = (Symn−1H⊗ E) ⊕ (Symn−3H⊗ E) .

The bundle ΣM ⊗ V is globally defined for all quaternionic dimensions n and we can
therefore compute the index ind(DV ) of the corresponding twisted Dirac operator by using
(1). We thus obtain

(2) ind(DSymn−2H⊗TMC) = ind(DSymn−1H⊗E) + ind(DSymn−3H⊗E) = −(b2(M) + b0(M)) .

A key fact, cf. [19, Corollary 4.3], is that b2(M) = 0 for all compact quaternion-Kähler
manifold M of positive type other than the complex Grassmannians Gr2(Cn+2), whereas
b2(M) = 1 if M = Gr2(Cn+2), which, as already observed, has a natural complex structure.
We now assume that M is different from Gr2(Cn+2), so that b2(M) = 0. The above index
calculation then reads

(3) ind(DSymn−2H⊗TMC) = −1 .

Assume, for a contradiction, that M carries an almost complex structure. Then the tangent
bundle TM is a complex vector bundle and its complexification splits into the sum of two
complex sub-bundles TMC = θ ⊕ θ∗. For the components of the Chern character we
have chi(θ

∗) = (−1)ichi(θ). On the other hand, ch(Symn−2H) and Â(TM) have non-zero

components only in degree 4k. Indeed, Â(TM) is a polynomial in the Pontryagin classes of
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M and Symn−2H is a self-dual locally defined complex bundle. The Atiyah-Singer formula
for twisted Dirac operators (cf. [3]) then yields

ind(DSymn−2H⊗TMC) =ch(Symn−2H)ch(TMC)Â(TM)[M ]

=2 ch(Symn−2H)ch(θ)Â(TM)[M ] .
(4)

Notice that ch(Symn−2H) is well-defined in H∗(M,Q), even if n is odd.

Now, ch(Symn−2H)ch(θ)Â(TM)[M ] is the index of the twisted Dirac operator DSymn−2H⊗θ
on the (globally defined) bundle ΣM ⊗ Symn−2H⊗ θ and thus has to be an integer. This
implies that that ind(DSymn−2H⊗TMC) is even, hence contradicts (3).

If the manifold is assumed to be weakly complex then there exists a trivial real vector
bundle ε such that TM⊕ε is a complex vector bundle. By replacing V = Symn−2H⊗TMC

with V = Symn−2H ⊗ (TM ⊕ ε)C in the above argument, this remains unchanged, as the
extra term

ind(DSymn−2H⊗εC) = rk(ε) ind(DSymn−2H)

in (2) is zero, again because of (1). This completes the proof of Theorem 1.1.

3. Proof of Theorem 1.2

We first establish a general formula, of separate interest, for the index of a family of
homogeneous twisted Dirac operators defined on inner symmetric spaces.

Let M = G/K be an irreducible inner symmetric space of compact type, where G
denotes a (connected) compact simple Lie group and K a connected closed subgroup of G.
Notice that the condition implies that M is even-dimensional. We fix a common maximal
torus T ⊂ K ⊂ G and we endow the dual Lie algebra t∗ with a suitable positive definite
scalar product 〈·, ·〉, proportional to the one induced by the opposite of the Killing form of
G. We denote by ρκ and ρg the half-sum of the positive roots of K and G respectively.

The isotropy representation K → SO(m) induces a group homomorphism K̃ → Spin(m)
and thus a representation of K̃ on the spin modules Σ±m, where K̃ stands for K itself or a
two-fold covering of K. Let Vµ be a complex representation of K̃ with highest weight µ ∈ t∗.

We assume that the induced representation of K̃ on Vµ ⊗Σ±m descends to a representation
of K. We then denote by Σ±µM := G×K (Vµ⊗Σ±m) the corresponding twisted spin bundles
and by DVµ the twisted Dirac operator acting on sections of Σ±µM := G×K (Vµ ⊗ Σ±m).

Theorem 3.1. Let w ∈ Wg be a Weyl group element for which w(µ+ρκ)−ρg is g-dominant.
Then the index of the twisted Dirac operator DVµ : C∞(Σ+

µM) → C∞(Σ−µM) is given by
the formula

(5) ind(DVµ) =
∏
α∈R+

〈µ+ ρκ, α〉
〈ρg, α〉

=: i(µ),

where the product goes over all positive roots of G. If such a w does not exist the index is
zero.

Proof. The generalized Bott-Borel-Weil theorem (cf. [17], Theorem 4.5.1) states that the
kernel of DVµ is an irreducible G-representation of highest weight w(µ + ρκ) − ρg, where
w is as in the assumption of the theorem. Note that w is unique as soon as it exists. If
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such a w does not exist, the kernel is zero. It follows that the index of DVµ is given as

(−1)l(w) dimVw(µ+ρκ)−ρg , or zero if such a w does not exist (cf. [17], Corollary 4.5.2). Here
l(w) is the length of the Weyl group element w, defined as the number of positive roots
α such that w(α) is a negative root. It is also the smallest integer k for which w can be
written as the product of k reflections in simple roots. Thus the length of w is the same
as the length of w−1 = wt. The Weyl dimension formula implies

(6) dim(Vw(µ+ρκ)−ρg) =
∏
α∈R+

〈w(µ+ ρκ), α〉
〈ρg, α〉

=
∏
α∈R+

〈ρg, α〉−1
∏
α∈R+

〈µ+ ρκ, wt(α)〉

If we replace in the set {wt(α)| α ∈ R+} the l(w) roots which are mapped by wt to negative
roots by their negative, we obtain again the set R+ of positive roots. Hence∏

α∈R+

〈µ+ ρκ, wt(α)〉 = (−1)l(w)
∏
α∈R+

〈µ+ ρκ, α〉.

Substituting this into formula (6) and using ind(DVµ) = (−1)l(w) dimVw(µ+ρκ)−ρg completes
the proof of the theorem. �

The following criterion, extracted from the proof of Theorem 1.1 in Section 2, provides a
general obstruction for the tangent bundle of a compact manifold to being weakly complex.

Proposition 3.2. Let (M4n, g) be a compact Riemannian manifold carrying a locally de-
fined complex vector bundle E such that the following conditions hold:

(a) E is self-dual, i.e. E is isomorphic to its dual bundle E∗.
(b) E ⊗ΣM is globally defined, where ΣM denotes the (locally defined) spin bundle of

M .
(c) The index of the twisted Dirac operator DE⊗TMC is odd.

Then the tangent bundle of M is not weakly complex and in particular M cannot carry an
almost complex structure.

Proof. The Atiyah-Singer index formula for twisted Dirac operators (cf. [3]) reads

(7) ind(DV ) = ch(V )Â(TM)[M ]

for every complex bundle V such that V ⊗ ΣM is globally defined.

Assume that TM is weakly complex, i.e. there exists a trivial real vector bundle ε (of
even rank) such that TM ⊕ ε is a complex vector bundle. Then its complexification splits
into the sum of two complex bundles (TM ⊕ ε)C = θ ⊕ θ∗.

Since Â(TM) is a polynomial in the Pontryagin classes of M , it has non-zero components
only in degree 4k. Condition (a) shows that the Chern character ch(E) has the same
property. Moreover, the components of the Chern characters of θ and θ∗ satisfy chi(θ

∗) =
(−1)ichi(θ). Applying (7) to V = E ⊗ θ and V = E ⊗ θ∗ yields

(8) ind(DE⊗θ) = ch(E)ch(θ)Â(TM)[M ] = ch(E)ch(θ∗)Â(TM)[M ] = ind(DE⊗θ∗).
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Using this equation, the condition that rk(ε) is even and assumption (b), we infer

ind(DE⊗TMC) ≡ ind(DE⊗TMC) + rk(ε)ind(DE) mod 2

≡ ind(DE⊗(TMC⊕εC)) mod 2

≡ ind(DE⊗θ) + ind(DE⊗θ∗) mod 2

≡ 2ind(DE⊗θ) ≡ 0 mod 2,

contradicting (c). This proves the proposition. �

Remark 3.3. Notice that in dimension 4n + 2, there exist no local bundle E satisfying
conditions (a)–(c). Indeed, if E is self-dual, the Chern character of E⊗TMC has non-zero
components only in degree 4k. Formula (7) applied to V = E ⊗TMC then shows that the
index of the twisted Dirac operator DE⊗TMC vanishes.

We now check that the criterion given by Proposition 3.2 applies to all 4n-dimensional
(simply connected) irreducible inner symmetric spaces of compact type, using as main tool
the formula (5) in Theorem 3.1. We focus on those cases which were not fully covered by

previous works, namely the oriented real Grassmannians G̃r2p(R2p+q) with either p or q even
(of dimension 2pq), the exceptional inner symmetric space E8/(Spin(16)/Z2) (of dimension
128), and the Cayley projective plane F4/Spin(9) (of dimension 16). The quaternionic
Grassmannians can be handled with quite similar methods.

3.1. The oriented real Grassmannians G̃r2p(R2p+q).

3.1.1. Case I: q = 2q′ is even. Since for p = 1 or q′ = 1 the Grassmannian of oriented
2-planes is a Hermitian symmetric space, we assume p, q′ ≥ 2. The symmetric space
M = G/K := SO(2p+ 2q′)/SO(2p)× SO(2q′) is spin (cf. [14]). Let H and H ′ denote the
tautological bundles over M , associated to the standard representations of SO(2p)×SO(2q′)
on R2p and R2q′ respectively. It is well-known that TM is isomorphic to H ⊗H ′ (cf. [4],
p. 312).

The root system of G consists of the vectors ±ei ± ej, 1 ≤ i < j ≤ p+ q′. We choose as

fundamental Weyl chamber the one containing the vector
∑p+q′

i=1 (p+ q′− i)ei. The positive
roots are then ei ± ej, 1 ≤ i < j ≤ p+ q′, and their half-sum is

ρg =

p+q′∑
i=1

(p+ q′ − i)ei.

The root system of K is the direct sum of the root systems of SO(2p) and SO(2q′) and
thus

ρκ =

p∑
i=1

(p− i)ei +

q′∑
j=1

(q′ − j)ep+j.

Let E be the complex vector bundle over M associated to the complex representation of
K with highest weight

(9) µ = (q′ − 1)

p∑
i=1

ei + (p− 2)ep+1.
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In other words, E is the Cartan component in the tensor product of the (q′−1)-th symmetric
power of ΛpHC and the (p − 2)-th symmetric power of (H ′)C. It clearly satisfies (a) and
(b) in Proposition 3.2, and we claim that it also satisfies (c).

To see this, we need to compute the decomposition in irreducible summands of E⊗TMC.
This is given by the following standard facts:

Lemma 3.4. The tensor product of complex irreducible Spin(2r) representations with high-
est weights e1 and k(e1 + . . .+ er) is the direct sum of representations with highest weights
(k + 1)e1 + k(e2 + . . .+ er) and k(e1 + . . .+ er−1) + (k − 1)er.

The tensor product of complex irreducible Spin(2r) representations with highest weights
e1 and ke1 is the direct sum of representations with highest weights (k+ 1)e1, ke1 + e2 and
(k − 1)e1.

Proof. The statements of the lemma follow from a routine decomposition of tensor prod-
ucts. However, in this special case, where one of the factors is the standard representation
of Spin(2r), the decomposition can directly be read off the table given in [26] p. 511. �

The complexified bundles HC and (H ′)C are associated to the irreducible SO(2p) ×
SO(2q′) representations with highest weights e1 and ep+1. (This is where the hypothesis
p, q′ ≥ 2 is used: The complexification of the standard representation of SO(2) on R2 is re-
ducible!) Lemma 3.4 shows that E⊗TMC is associated to the direct sum of representations
with highest weights

µ1 = q′e1 +(q′−1)

p∑
i=2

ei+(p−1)ep+1, µ2 = (q′−1)

p−1∑
i=1

ei+(q′−2)ep+(p−1)ep+1,

µ3 = q′e1+(q′−1)

p∑
i=2

ei+(p−2)ep+1+ep+2, µ4 = (q′−1)

p−1∑
i=1

ei+(q′−2)ep+(p−2)ep+1+ep+2,

µ5 = q′e1 +(q′−1)

p∑
i=2

ei+(p−3)ep+1, µ6 = (q′−1)

p−1∑
i=1

ei+(q′−2)ep+(p−3)ep+1.

It is clear that the coordinates of µ1 + ρκ are a permutation of the coordinates of ρg, so
i(µ1) = ±1. Moreover, i(µi) = 0 for 2 ≤ i ≤ 6 since µi + ρκ has two equal coordinates in
each case. By Theorem 3.1, condition (c) in Proposition 3.2 is satisfied, hence the tangent
bundle of M is not weakly complex.

3.1.2. Case II: p = 2p′ is even. We can assume that q is odd since the case where q is even
is included in the previous one. The manifold M = SO(2p+ q)/SO(2p)×SO(q) is not spin
(cf. [14]). Nevertheless, the tensor product of the (locally defined) spin bundle of M and
any odd tensor power of the locally defined spin bundle of H is globally defined. For q ≥ 3
we take E as the locally defined complex vector bundle over M associated to the complex
representation of Spin(2p)× Spin(q) with highest weight

(10) µ = ( q
2
− 1)

p∑
i=1

ei + (p− 2)ep+1

(incidentally this is exactly the same formula as (9)). Like before, Theorem 3.1 shows that
the index of the Dirac operator twisted with E ⊗ TMC is ±1. Moreover, E is self-dual,
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being associated to the Cartan component of the tensor product of self-dual representations:
The complexification of the standard representation of SO(q) and the spin representation
of Spin(4p′). Proposition 3.2 thus shows that M is not weakly complex.

The argument does not apply for q = 1 since µ is no longer a highest weight in that
case. This is of course compatible with the fact that the sphere S2p = SO(2p+ 1)/SO(2p)
is weakly complex, having stably trivial tangent bundle.

Remark 3.5. The above construction can also be carried out verbatim on the remaining

even-dimensional oriented real Grassmannians G̃r2p(R2p+q), when p and q are both odd,
by choosing for E the locally defined complex vector bundle associated to the complex
representation of Spin(2p)× Spin(q) with highest weight given by (10). In other words, E
is the Cartan component in the tensor product of the (q − 2)-th symmetric power of the
spin representation Σ+

2p and the (p− 2)-th symmetric power of (H ′)C. The same argument
shows that the index of the corresponding twisted Dirac operator is ±1. However, the
bundle E is no longer self-dual if p and q are both odd, since the spin representation of
Σ+

2p – and thus its (q − 2)-th symmetric power – is not self-dual in this case.

3.2. The exceptional symmetric space M = E8/(Spin(16)/Z2). The group Z2 acting
on Spin(16) is generated by the volume element v := e1 . . . e16 ∈ Spin(16) (cf. [1]).
The positive half-spin representation factors through v and induces a representation of
Spin(16)/Z2 on Σ+

16 whose associated bundle is just TMC. Since v maps to −id ∈ SO(16),
the representation of Spin(16) on R16 defined by the spin covering ξ : Spin(16)→ SO(16)
induces a locally defined real vector bundle H on M . Of course, all even tensor products
of H are globally defined vector bundles on M . Moreover, the manifold M is spin (cf [14]).
Conditions (a) and (b) in Proposition 3.2 are thus satisfied for E = Sym2k

0 H
C, i.e. the

Cartan summand of the 2k-th symmetric power of HC, associated to the representation of
Spin(16) with highest weight (2k, 0, 0, 0, 0, 0, 0, 0) ∈ t∗ ' R8.

We will use Theorem 3.1 in order to compute the index of the Dirac operator on M
twisted with TMC⊗Sym2k

0 H
C. Since TMC is associated to the positive half-spin represen-

tation, whose highest weight is 1
2
(1, 1, 1, 1, 1, 1, 1, 1), we need to decompose Sym2k

0 H
C⊗Σ+

16

into irreducible components.

Lemma 3.6. Sym2k
0 H

C⊗Σ+
16 is the direct sum of the Spin(16)-representations with highest

weights 1
2
(4k + 1, 1, 1, 1, 1, 1, 1, 1) and 1

2
(4k − 1, 1, 1, 1, 1, 1, 1,−1).

Proof. Again the decomposition follows from a standard calculation, where in this case the
result can also be found in [21], p. 303. �

The root system R(E8) is the disjoint union of the root system of Spin(16) and the
weights of the half-spin representation Σ+

16. It thus consists of the vectors ±ei ± ej, 1 ≤
i < j ≤ 8 and

1

2

8∑
i=1

εiei, εi = ±1, ε1 · · · ε8 = 1.

With respect to the fundamental Weyl chamber containing the vector (23, 6, 5, 4, 3, 2, 1, 0),
the set of positive roots of Spin(16) is R+(Spin(16)) = {ei ± ej | 1 ≤ i < j ≤ 8}, and the
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set of positive roots of E8 is

R+(E8) = R+(Spin(16)) ∪
{

1

2

8∑
i=1

εiei | ε1 = 1, εi = ±1, ε1 · · · ε8 = 1

}
.

The half-sums of the positive roots of K = Spin(16)/Z2 and G = E8 are thus given by

ρκ = (7, 6, 5, 4, 3, 2, 1, 0) and ρg = (23, 6, 5, 4, 3, 2, 1, 0).

It is clear that µ1+ρκ is orthogonal to the root α = 1
2
(1,−1,−1,−1,−1,−1,−1, 1) for µ1 :=

1
2
(33, 1, 1, 1, 1, 1, 1, 1), so the integer i(µ) defined by (5) vanishes for µ = µ1. Moreover,

an elementary computation shows that i(µ2) = −1 for µ2 := 1
2
(31, 1, 1, 1, 1, 1, 1,−1). By

Lemma 3.6, the tensor product TMC⊗Sym16
0 H

C is associated to the direct sum of Spin(16)-
representations with highest weights µ1 and µ2. Theorem 3.1 thus shows that condition
(c) in Proposition 3.2 is satisfied for E = Sym16

0 H
C, hence the tangent bundle of M is not

weakly complex.

3.3. The Cayley projective plane M = F4/Spin(9). The complexified tangent bundle
TMC is associated to the spin representation on Σ9 ' C16 (cf. [4], p. 302). Let H
denote the real bundle associated to the representation of Spin(9) on R9 defined by the
spin covering Spin(9)→ SO(9), with highest weight (1, 0, 0, 0) ∈ t∗ ' R4. It is well-known
that the Cayley projective plane is spin (cf [14]). Conditions (a) and (b) in Proposition
3.2 are thus satisfied for E = HC.

We will use Theorem 3.1 again in order to compute the index of the Dirac operator on

M twisted with TMC ⊗HC. Recall that Σ9 ⊗ C9 ' Σ9 ⊕ Σ
3
2
9 , the two summands having

highest weights 1
2
(1, 1, 1, 1) and 1

2
(3, 1, 1, 1) respectively.

The root systemR(F4) is the disjoint union of the root system of Spin(9) and the weights
of the spin representation Σ9. It thus consists of the vectors ±ei ± ej, 1 ≤ i < j ≤ 4, ±ei,
1 ≤ i ≤ 4 and

1

2

4∑
i=1

εiei, εi = ±1.

With respect to the fundamental Weyl chamber containing the vector (11, 5, 3, 1), the set
of positive roots of Spin(9) is R+(Spin(9)) = {ei ± ej | 1 ≤ i < j ≤ 4} ∪ {ei | 1 ≤ i ≤ 4},
and the set of positive roots of F4 is

R+(F4) = R+(Spin(9)) ∪
{

1

2

4∑
i=1

εiei | ε1 = 1, εi = ±1

}
.

The half-sums of the positive roots of K = Spin(9) and G = F4 are thus given by

ρκ = 1
2
(7, 5, 3, 1) and ρg = 1

2
(11, 5, 3, 1).

It is clear that 1
2
(1, 1, 1, 1) + ρκ is orthogonal to the root α = 1

2
(1,−1,−1, 1) so the in-

teger i(µ) defined by (5) vanishes for µ = 1
2
(1, 1, 1, 1). An easy elementary computation

shows that i(µ) = −1 for µ := 1
2
(3, 1, 1, 1). Theorem 3.1 thus shows that condition (c)

in Proposition 3.2 is satisfied for E = HC, hence the tangent bundle of M is not weakly
complex.
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Remark 3.7. A similar argument shows that the remaining exceptional symmetric space
M = E7/(SU(8)/Z2) (of dimension 70) also carries a complex vector bundle E satisfying
conditions (b) and (c) in Proposition 3.2. More precisely, E is the Cartan component of
the 10-th symmetric power of the locally defined bundle on M associated to the standard
representation of SU(8). Of course, E is not self-dual, cf. Remark 3.3.
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École Polytechnique
UMR 7640 du CNRS
91128 Palaiseau
France

E-Mail: pg@math.polytechnique.fr, am@math.polytechnique.fr

Uwe Semmelmann
Mathematisches Institut, Universität zu Köln
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2008/004 Leitner, F.: Conformally closed Poincaré-Einstein metrics with intersecting scale singularities
2008/003 Effenberger, F.; Kühnel, W.: Hamiltonian submanifolds of regular polytope
2008/002 Hertweck, M.; Hofert, C.R.; Kimmerle, W.: Finite groups of units and their composition factors

in the integral group rings of the groups PSL(2, q)
2008/001 Kovarik, H.; Vugalter, S.; Weidl, T.: Two dimensional Berezin-Li-Yau inequalities with a

correction term
2007/006 Weidl, T.: Improved Berezin-Li-Yau inequalities with a remainder term
2007/005 Frank, R.L.; Loss, M.; Weidl, T.: Polya’s conjecture in the presence of a constant magnetic

field
2007/004 Ekholm, T.; Frank, R.L.; Kovarik, H.: Eigenvalue estimates for Schrödinger operators on

metric trees



2007/003 Lesky, P.H.; Racke, R.: Elastic and electro-magnetic waves in infinite waveguides
2007/002 Teufel, E.: Spherical transforms and Radon transforms in Moebius geometry
2007/001 Meister, A.: Deconvolution from Fourier-oscillating error densities under decay and smooth-

ness restrictions


	1. Introduction
	2. Proof of Theorem 1.1
	3. Proof of Theorem 1.2
	3.1. The oriented real Grassmannians Gr"055DGr2p(R2p+q)
	3.2. The exceptional symmetric space M=E8/(Spin(16)/Z2)
	3.3. The Cayley projective plane M=F4/Spin(9)

	References

