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THERMO-ELASTICITY FOR ANISOTROPIC MEDIA

IN HIGHER DIMENSIONS

JENS WIRTH

Abstract. In this note we develop tools to study the Cauchy problem for the system of
thermo-elasticity in higher dimensions. The theory is developed for general homogeneous
anisotropic media under non-degeneracy conditions.

For degenerate cases a method of treatment is sketched and for the cases of cubic media
and hexagonal media detailed studies are provided.
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1. Introduction

While isotropic thermo-elasticity is a well-known and well-established subject (see, e.g., the
book of Jiang Song-Racke [15] and references therein) only very few results are available for
the case of anisotropic media. Among them are the theses of Borkenstein [1] for cubic media
and Doll [3] for the case of rhombic media together with the authors treatments [16], [22], all
in two space dimensions.

Key words and phrases. thermo-elasticity, a-priori estimates, anisotropic media, degenerate hyperbolic
problems.
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In this paper the system of anisotropic thermo-elasticity in three (and more) dimensions,
i.e.,

Utt +A(D)U + γ∇θ = 0, (1.1a)

θt − κ∆θ + γ∇ · Ut = 0 (1.1b)

for the elastic displacement U(t, ·) : Rn → Rn and temperature difference θ(t, ·) : Rn → R to
the equilibrium state, will be considered. The system (1.1) couples the hyperbolic elasticity
equation with the parabolic heat equation. The operator A(D) describes the elastic properties
of the underlying medium, while κ denotes its thermal conductibility. The constant γ describes
the thermo-elastic coupling. Basic assumptions of our theory are κ > 0, γ2 > 0 together with

• A(ξ) = |ξ|2A(η), η = ξ/|ξ|, is a 2-homogeneous matrix-valued symbol;
• A : Sn−1 → Rn×n is a real-analytic function of η ∈ Sn−1, n ≥ 3;
• A(η) = A∗(η) > 0 is self-adjoint and positive.

In general we can not assume that A(η) is non-degenerate in the sense that # specA(η) = n
for all η ∈ Sn−1 (as done for the two-dimensional case in [16]). All basic examples show
degeneracies in dimensions n ≥ 3.

Example 1.1. Isotropic media

A(η) = µI + (λ+ µ)η ⊗ η (1.2)

with Lamé constants λ and µ. The matrix A(η) is positive as long as µ > 0 and λ > −2µ.
The eigenvectors of A(η) are multiples of η and η⊥ and thus invariant under rotations of
frequency space.

Example 1.2. Cubic media

A(η) =


(τ − µ)η2

1 + µ (λ+ µ)η1η2 · · · (λ+ µ)η1ηn

(λ+ µ)η1η2 (τ − µ)η2
2 + µ

...
...

. . .
...

(λ+ µ)η1ηn · · · · · · (τ − µ)η2
n + µ

 (1.3)

described by parameters λ, µ and τ . Later we will describe the assumptions made on these
parameters and the resulting spectral properties of the matrix function A(η) more precise.
In the case of three space dimensions, the matrix A(η) is positive if and only if µ > 0, τ > 0
together with −2µ − τ/2 < λ < τ . In three space dimensions this will be one of our main
examples.

Example 1.3. We can replace the constant τ on the diagonal by τ1, . . . , τn in (1.3). This yields
so-called rhombic media. The behaviour of rhombic media is close to that of cubic media if
the parameters are of similar size, in general there will appear exceptional situations. See,
e.g., [22] or [24] for a discussion of this effect in two space dimensions.

Example 1.4. Hexagonal media are another particularly interesting case for three space di-
mensions. Since we want to come back to them later on we introduce the corresponding
operator. It is given by

A(η) = D(η)TCD(η), (1.4)
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where C contains the 5 structure constants τ1, τ2, λ1, λ2 and µ and D(η) is of a particular
form,

C =


τ1 λ1 λ2

λ1 τ1 λ2

λ2 λ2 τ2

µ
µ

τ1−λ1
2

 , D(η) =


η1

η2

η3

η3 η2

η3 η1

η2 η1

 . (1.5)

Even the first (non-trivial anisotropic) example, the case of cubic media in three space
dimensions, has degenerate directions in which A(η) has double eigenvalues. Later on we will
analyse this example in detail.

Definition 1. We call a direction η ∈ Sn−1 (elastically) non-degenerate if

# specA(η) = n (1.6)

holds true for this direction η.

The set of non-degenerate directions is an open subset of Sn−1. For non-degenerate di-
rections the treatment of [16] transfers almost immediately and gives a representation of
solutions. We will sketch the results in Section 2. In Section 3 we consider special degener-
ate directions and discuss the examples of cubic and hexagonal media. Dispersive estimates
for solutions are given in Section 4. In the neighbourhood of degenerate directions they are
essentially based on estimates developed by Liess [8], [10] for the treatment of anisotropic
acoustic equations.

2. Treatment of non-degenerate directions

For the following we consider a simply connected open subset U of Sn−1, where the symbol
A(η) has n distinct (and real) eigenvalues. We denote these eigenvalues in ascending order as

0 < κ1(η) < κ2(η) < · · · < κn(η). (2.1)

By analytic perturbation theory, see [6], we know that these eigenvalues are real-analytic and
that we find corresponding normalised eigenvectors

r1(η), . . . , rn(η) ∈ C∞(U ,Sn−1) (2.2)

depending analytically on η ∈ U . Collecting them in the unitary matrix

M(η) =
(
r1(η)|r2(η)| · · · |rn(η)

)
, (2.3)

M∗(η)M(η) = I = M(η)M∗(η), (2.4)

we can diagonalise the matrix A(η)

A(η)M(η) = M(η)D(η), (2.5)

D(η) = diag
(
κ1(η),κ2(η), . . . ,κn(η)

)
. (2.6)

In our treatment we will not make use of analyticity directly, instead our use of perturbation
theory will be based on [5] und [23] and uses only smooth dependence. This will be of interest
for generalisations later on. Therefore, whenever we use analyticity, we will explicitly state
that.
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We use M(η) to reduce the thermo-elastic system to a system of first order. For this we

denote by Û and θ̂ the partial Fourier transforms of U and θ with respect to the spatial
variables and consider

V =

(Dt +D1/2(ξ))M∗(η)Û

(Dt −D1/2(ξ))M∗(η)Û

θ̂

 ∈ C2n+1, (2.7)

as usual Dt = −i∂t and η = ξ/|ξ|. Then V satisfies a first order system of ordinary differential
equations, which has an apparantly simple structure. Straightforward calculation shows that

DtV = B(ξ)V (2.8)

holds true with coefficient matrix

B(t, ξ) =



ω1(ξ) iγa1(ξ)
ω2(ξ) iγa2(ξ)

. . .
...

−ω1(ξ) iγa1(ξ)
−ω2(ξ) iγa2(ξ)

. . .
...

iγ
2 a1(ξ) iγ

2 a2(ξ) · · · iγ
2 a1(ξ) iγ

2 a2(ξ) · · · iκ|ξ|2


, (2.9)

where ωj(ξ) =
√
κj(ξ) ∈ C∞(U ,R+) and

aj(ξ) = rj(η) · ξ. (2.10)

Following the conventions of [16] we denote these functions aj(ξ) as the coupling functions
of the thermo-elastic system associated to the elastic operator A(D). They play a prominent
rôle for the description of the time-asymptotic behaviour of solutions. This reflects the fact
that they couple the homogeneous first order entries in B(ξ) with the second order lower right
corner entry. Note, that

n∑
j=1

a2
j (η) = 1. (2.11)

Zeros of the coupling functions are of particular importance. Following [16, Def. 1] we define:

Definition 2. A non-degenerate direction η ∈ Sn−1 is called

• hyperbolic if one of the coupling functions vanishes; more precisely, it is called hyper-
bolic with respect to the eigenvalue κj(η) if aj(η) = 0;
• parabolic if all coupling functions are non-zero.

In the anisotropic case the set of hyperbolic directions is (generically1) a lower dimensional
subset of Sn−1. In order to decide whether a direction is hyperbolic or parabolic we can
employ the following proposition. We denote for a matrix A and a vector η by

Z(A, η) = span{Akη | k = 0, 1, . . . } (2.12)

1If not, by analyticity it follows that one coupling function vanishes on U and the system is therefore
decoupled. This case is reduced to the study of the lower dimensional blocks, one is a hyperbolic system
the other one a thermo-elastic system of lower dimension. This is, e.g., the case for hexagonal media, see
Section 3.4.
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the corresponding cyclic subspace, i.e. the span of the trajectory of η under the action of the
matrix A.

Proposition 2.1. The following statements are equivalent:

(1) The cyclic subspace of η has dimension n− k, i.e., dimZ(A(η), η) = n− k.
(2) Exactly k of the coupling functions vanish in η.

Hence, a non-degenerate direction η ∈ Sn−1 is parabolic if and only if Z(A(η), η) = Rn and
therefore

det
(
η|A(η)η| · · · |An−1(η)η

)
6= 0. (2.13)

Proof. If we represent η in the eigenbasis of A(η) we obtain

η = a1(η)r1(η) + · · ·+ an(η)rn(η) (2.14)

and therefore

A`(η)η = κ`1(η)a1(η)r1(η) + · · ·+ κ`n(η)an(η)rn(η). (2.15)

If k of the coupling functions vanish, then An−k(η)η must be in the span of the A`(η)η with
` = 0, 1, . . . , n−k−1 and thus the cyclic subspace is at most of dimension n−k. On the other
hand, the first n−k vectors in the trajectory are linearly independent since the corresponding
matrix in the basis representation with respect to a1(η)r1(η), . . . , an(η)rn(η) is just the van
der Monde matrix associated to the eigenvalues of A(η) for non-vanishing coupling functions
and therefore regular. �

2.1. On the characteristic polynomial of the full symbol. At first we collect some of
the spectral properties of the matrix B(ξ) which are directly related to the characteristic
polynomial of B(ξ).

Proposition 2.2. The following identies hold true:

trB(ξ) = iκ|ξ|2, (2.16)

detB(ξ) = iκ|ξ|2 detA(ξ), (2.17)

det(ν −B(ξ)) = (ν − iκ|ξ|2)

n∏
j=1

(ν2 − κj(ξ))− νγ2
n∑
j=1

a2
j (ξ)

∏
k 6=j

(ν2 − κk(ξ)). (2.18)

Furthermore, the matrix B(ξ) has a purely real eigenvalue for ξ 6= 0 if and only if the direction
η = ξ/|ξ| is hyperbolic. If it is j-hyperbolic, then ±ωj(ξ) ∈ specB(ξ).

The proof of the last fact is fairly straightforward and consists of separating real and
imaginary parts of the characteristic polynomial. Note that for all parabolic directions we
can divide the characteristic polynomial by ν

∏
j(ν

2 − κj(ξ)) to obtain

1 =
iκ|ξ|2

ν
+ γ2

n∑
j=1

a2
j (ξ)

ν2 − κj(ξ)
. (2.19)

This formulation allows to consider the neighbourhoods of hyperbolic directions. Assume for
this that the set of hyperbolic directions with respect to κj(η)

Mj = {η ∈ U | aj(η) = rj(η) · η = 0} (2.20)
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∼

ω1 ω2 ω3

γ
−2

1 ν2 ν3ν
∼ ∼

Figure 1. Non-zero eigenvalues of B1(ξ) for parabolic directions.

is a regular submanifold of U . If we consider the corresponding hyperbolic eigenvalues ν±j (ξ)

of B(ξ) in a neighbourhood of Mj , i.e. the eigenvalues which satisfy

lim
η→Mj

ν±j (ξ) = ±ωj(ξ) (2.21)

for fixed |ξ|, equation (2.19) gives a precise description of the behaviour of the imaginary part
of these eigenvalues. The proof is a straightforward generalisation from [16, Prop. 2.2].

Proposition 2.3. The non-tangential limit

lim
η→Mj

a2
j (ξ)

ν±j (ξ)2 − κj(ξ)
= 1∓ iκ|ξ|2

ωj(ξ)
− γ2

∑
k 6=j

a2
k(ξ)

κj(ξ)− κk(ξ)
= γ2(Cη̄ ∓ iDη̄|ξ|) (2.22)

exists and is non-zero for all ξ 6= 0. Furthermore,

lim
η→Mj

Im ν±j (ξ)

a2
j (η)

=
Dη̄|ξ|2

2ωj(η̄)(C2
η̄ + |ξ|2D2

η̄)
> 0. (2.23)

2.2. Asymptotic expansion of the eigenvalues as |ξ| → 0. We decompose B(ξ) into
homogeneous componentsB(ξ) = B1(ξ)+B2(ξ) of degree 1 and 2, respectively. For sufficiently
small |ξ| we expect the eigenvalues of B(ξ) to be close to the eigenvalues of B1(ξ). For
parabolic directions the (non-zero) eigenvalues of B1(η) can be determined from the equation

1

γ2
=

n∑
j=1

a2
j (η)

ν̃2 − κj(η)
, (2.24)

which follows directly from (2.19) with κ = 0. It can be solved (e.g. graphically, see Figure 1
for n = 3) to obtain the distinct eigenvalues 0, ±ν̃1(η), . . . , ±ν̃n(η) ordered as

0 < ω1(η) < ν̃1(η) < ω2(η) < ν̃2(η) < · · · < ωn(η) < ν̃n(η). (2.25)

For hyperbolic directions a similar result holds true. In the case of hyperbolic directions
w.r.to κj(η) eigenvalues move to ωj(η). According to the choice of the coupling constant γ
different cases occur:
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(1) if 1
γ2

is large then ν̃j(η) = ωj(η), the other inequalities are unchanged;

(2) if 1
γ2

is small then ν̃j−1(η) = ωj(η) and the other inequalities remain true.

The critical threshold between these two cases is

1

γ2
=
∑
k 6=j

a2
k(η)

κj(η)− κk(η)
, (2.26)

where B1(η) has the double eigenvalue ν̃j−1(η) = ωj(η) = ν̃j(η). Following the conventions
from [16] we define:

Definition 3. We denote a hyperbolic direction w.r.to κj(η) as γ-degenerate if (2.26) holds
true.

For the following treatment we exclude γ-degenerate hyperbolic directions and assume
instead that for all hyperbolic directions in U condition (2.26) is not satisfied for the corre-
sponding index j. Then the following statement is apparent.

Proposition 2.4. Let η be not γ-degenerate. Then the matrix B1(η) has 2n+ 1 distinct real
eigenvalues 0,±ν̃1, . . . ,±ν̃n for all η ∈ U .

Proposition 2.4 allows to apply the standard diagonalisation scheme (see [5, Sec. 2.1]) to
B(ξ) = B1(ξ) +B2(ξ) as ξ → 0. Hence, eigenvalues, eigenprojections and all their derivatives
have full asymptotic expansions as ξ → 0. The proof is almost identical to that from [16,
Prop. 2.5] and is omitted.

Proposition 2.5. For all not γ-degenerate directions η = ξ/|ξ| ∈ U the eigenvalues and
eigenprojections of B(ξ) have full asymptotic expansions as ξ → 0. The main terms are given
by

ν0(ξ) = iκ|ξ|2b0(η) +O(|ξ|3) (2.27a)

ν±j (ξ) = ±|ξ|ν̃j(η) + iκ|ξ|2bj(η) +O(|ξ|3) (2.27b)

with

b0(η) =

(
1 + γ2

n∑
k=1

a2
k(η)

κk(η)

)−1

> 0 (2.28a)

and

bj(η) =

(
1 + γ2

n∑
k=1

a2
k(η)

ν̃2
j (η) + κk(η)

(ν̃2
j (η)− κk(η))2

)−1

≥ 0. (2.28b)

Furthermore, bj(η) = 0 if and only if η is hyperbolic with respect to the eigenvalue κj(η).

Remark 2.1. Note, that trB(ξ) = iκ|ξ|2 implies

b0(η) + 2
n∑
j=1

bj(η) = 1. (2.29)

Recall that by Proposition 2.2 eigenvalues of B(ξ) can only be real along hyperbolic direc-
tions (and then they are exactly the ’trivial’ real eigenvalues). In combination with the fact
that eigenvalues of B(ξ) are continuous in ξ we obtain:
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Corollary 2.6. For all parabolic directions η = ξ/|ξ| ∈ U we have Im ν±j (ξ) > 0. The same

is true as long as η is not hyperbolic w.r.to κj(η).

2.3. Asymptotic expansion of the eigenvalues as |ξ| → ∞. In this case the two-step
procedure developed in [5, Sec. 2.2], [16, Prop. 2.6] applies in analogy. Essential assumption
is the non-degeneracy of A(η). We omit the proof and cite the corresponding result only.

Proposition 2.7. For all non-degenerate directions the eigenvalues and eigenprojections of
the matrix B(ξ) have full asymptotic expansions as |ξ| → ∞. The first terms are given by

ν0(ξ) = iκ|ξ|2 − iγ

κ
+O(|ξ|−1), (2.30a)

ν±j (ξ) = ±|ξ|ωj(η) +
iγ2

2κ
a2
j (η) +O(|ξ|−1). (2.30b)

Remark 2.2. Despite the fact that we used the same notation for the eigenvalues as ξ → 0
and |ξ| → ∞, we do not claim that they are indeed the same functions of ξ. This is only true
for hyperbolic eigenvalues near hyperbolic directions, in general there might be multiplicities
in between and there might be no consistent notation for these functions.

Corollary 2.8. For all parabolic directions η = ξ/|ξ| the eigenvalues of B(ξ) satisfy Im ν(η) ≥
Cη > 0 for |ξ| ≥ c. The same is true for parabolic eigenvalues in hyperbolic directions.

Remark 2.3. In particular, we see by the asymptotic expansions that the eigenvalues of B(ξ)
are simple for large and also for small values of |ξ|. Furthermore, we see that the hyperbolic
eigenvalues are always separeted (i.e. if multiplicities occur in hyperbolic directions, they
involve only parabolic eigenvalues).

2.4. Behaviour of the imaginary part. The asymptotic expansions of Propositions 2.5
and 2.7 allow to draw conclusions for the behaviour of the imaginary part. We collect them
for later use. The first result is apparent.

Proposition 2.9. On any compact set of parabolic directions we have the uniform estimates

Im ν
(±)
j (ξ) ≥ Cε for all |ξ| ≥ ε, (2.31)

Im ν
(±)
j (ξ) ∼ bj(η)|ξ|2 for all |ξ| ≤ ε (2.32)

for all eigenvalues of B(ξ) and arbitrary ε > 0.

The next statement is concerned with a tubular neighbourhood of a compact subset of a
regular submanifold Mj of hyperbolic eigenvalues w.r.to κj(η). It is only of interest how the
corresponding hyperbolic eigenvalues ν±j (ξ) behave, the others still satisfy Proposition 2.9.

Proposition 2.10. Uniformly on any tubular neighbourhood of a compact subset of Mj of
non-γ-degenerate directions the corresponding hyperbolic eigenvalues ν±j (ξ) satisfy the esti-
mates

Im ν±j (ξ) ∼ a2
j (η) for all |ξ| ≥ ε, (2.33)

Im νj(ξ) ∼ bj(η)|ξ|2 for all |ξ| ≤ ε. (2.34)

Proof. By Proposition 2.3 we know that

Im ν±j (ξ) = a2
j (ξ)K(ξ) (2.35)
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for some function K(ξ). Our aim is to estimate K(ξ). The left hand of this formula has a
full asymptotic expansion as |ξ| → 0 and |ξ| → ∞. Therefore, also the right hand side has
one and it follows that

K(ξ) =
γ2

2κ
+O(|ξ|−1), |ξ| → ∞, (2.36a)

K(ξ) = κ|ξ|2 bj(η)

a2
j (η)

+O(|ξ|−3), |ξ| → 0. (2.36b)

Thus, the desired estimate follows by a compactness argument as soon as we have a uni-
form lower/upper bound for bj(η)/a2

j (η). The representation of bj(η) in Proposition 2.5 in

combination with (2.24) implies

lim
η→Mj

a2
j (η)

bj(η)
= lim
η→Mj

γ2(ν̃2
j + κj(η))

a4
j (η)

(ν̃2
j − κj(η))2

+ lim
η→Mj

a2
j (η)

1 + γ2
∑
k 6=j

a2
k(η)

ν̃2
j + κk(η)

(ν̃2
j − κk(η))2


=2γ2κj(η̄)

1− γ2
∑
j 6=k

a2
k(η̄)

κj(η̄)− κk(η̄)

2

, (2.37)

which is clearly bounded and (uniformly) positive on any compact subset of Mj (where we
have to use that η̄ ∈Mj is not γ-degenerate). �

2.5. Conclusions. We will draw several conclusions what we have obtained so far and what
we still have to consider in the remaining part of this treatise.

2.5.1. Cubic media in 3D. If we consider the special case of cubic media in three space dimen-
sions degenerate directions are given by η̄ = (η̄1, η̄2, η̄3)T with η̄2

1 = η̄2
2 = η̄2

3 (eight directions,
corresponding to the corners of a cube) or η̄2

i = 1 for some i (six directions, corresponding
to its faces). This can be calculated directly, corresponding eigenspaces are span{η̄} and
η̄⊥ = {ξ ∈ Rn | η̄ · ξ = 0}, or concluded by the cubic symmetry2 of A(ξ) in this particular
case. See Figure 2.

To obtain the hyperbolic directions we apply Proposition 2.1 and look for the action of η
under A(η). We obtain that

(1) a direction η is hyperbolic if and only if

det(η|A(η)η|A2(η)η) = (τ − λ− 2µ)3η1η2η3(η2
1 − η2

2)(η2
1 − η2

3)(η2
2 − η2

3) = 0, (2.38)

thus the set of hyperbolic directions is the union of nine great circles on S2;
(2) η||A(η)η for all 26 intersection points of these great circles, 14 of them are excluded

as being degenerate.

Except for these 14 points on S2 we obtained an almost complete description of the spectrum
of B(ξ). We know full asymptotic expansions of eigenvalues for small and large frequencies
|ξ|, estimates for the imaginary part of them and similar statements for eigenprojections. This

2A(ξ) is invariant under the hexaeder group, i.e. the symmetry group of a cube. Thus, eigenspaces must
be transferred in an appropriate way, which implies that symmetries of order 3 or 4 can only be realised by
higher dimensional eigenspaces.
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C

A

B

Figure 2. Degenerate points for cubic media correspond to symmetries of a
cube. Corner points A are conic singularities, midpoints of faces B uniplanar
singularities of specA(η). The midpoints of edges C are non-degenerate, but
hyperbolic with respect to two different eigenvalues.

information allows to draw conclusions on the large time behaviour of solutions, e.g. energy
and dispersive estimates. This can be done similar to the treatment of [16], see Section 4.
The remaining degenerate directions appear in two types, which can be interchanged by the
action of the symmetry group. The study of these degenerate directions is what is left open
so far and will be the main point of Section 3.

2.5.2. Isotropic media. If we consider the special case of isotropic media, A(η) = µI + (λ +
µ)η⊗η, we see that specA(η) = {µ, λ+2µ} and corresponding eigenspaces are span {η} (cor-
responding to λ+µ) and η⊥ (corresponding to µ). All directions are (elastically) degenerate.
However, we still find locally smooth systems of eigenvectors. All directions are hyperbolic
and the hyperbolic eigenvalue µ has multiplicity n− 1. Therefore the system DtV = B(ξ)V
decouples into a diagonal part of size 2n − 2 and a full 3 × 3 block and is given after a
rearrangement of the entries as

B(t, ξ) =



√
µ|ξ|

. . .

−√µ|ξ|
. . . √

λ+ 2µ|ξ| iγ|ξ|
−
√
λ+ 2µ|ξ| iγ|ξ|

− iγ
2 |ξ| − iγ

2 |ξ| iκ|ξ|2


. (2.39)

This block structure corresponds to the Helmholtz decomposition of vector fields applied
to the elastic displacement. If ∇ · U(t, ·) = 0 the lower block cancels and we obtain wave
equations with speed

√
µ for the components of U . Otherwise, if we cancel the upper block
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we obtain the 3× 3 system corresponding to one-dimensional thermo-elasticity with its well-
known properties.

2.5.3. One-dimensional thermo-elasticity. For completeness we mention some results on the
one-dimensional system

utt − τ2uxx + γθx = 0, (2.40a)

θt − κθxx + γutx = 0. (2.40b)

We assume γ, κ, τ > 0. Following our strategy we can rewrite this problem as first order
system. The corresponding symbol B(ξ) is given by

B(ξ) =

 τξ iγξ
−τξ iγξ

− i
2γξ −

i
2γξ iκξ2

 . (2.41)

Its eigenvalues satisfy asymptotic expansions for ξ → 0 and ξ → ±∞. Propositions 2.5

and 2.7 apply with ν̃± = ±
√
τ2 + γ2 and

b0 =
τ2

τ2 + γ2
, b1 =

1

2

γ2

τ2 + γ2
. (2.42)

Therefore, by Proposition 2.5

ν0(ξ) = i
κτ2

τ2 + γ2
ξ2 +O(ξ3), (2.43a)

ν±1 (ξ) = ±
√
τ2 + γ2ξ + i

κγ2

2(τ2 + γ2)
ξ2 +O(ξ3), (2.43b)

as ξ → 0 and by Proposition 2.7

ν0(ξ) = iκξ2 − i
γ

κ
+O(ξ−1), (2.43c)

ν±1 (ξ) = ±τξ + i
γ2

2κ
+O(ξ−1), (2.43d)

as ξ → ∞. The essential information for large time estimates is given by the behaviour of
the imaginary part. It follows that Im ν(ξ) > Cε for |ξ| ≥ ε for certain constants and

Im ν0(ξ) ∼ κτ2

τ2 + γ2
ξ2, Im ν±1 (ξ) ∼ κγ2

2(τ2 + γ2)
ξ2, ξ → 0. (2.44)

2.5.4. Hexagonal media in 3D. For hexagonal media in three space dimensions the situation
is (surprisingly) simpler than for cubic media. The elastic operator defined by (1.4)–(1.5) is
invariant under rotation around the x3-axis (taking into account a corresponding rotation of
the reference frame for vectors) and therefore it suffices to understand its cross sections in
the x1–x2 plane. We will sketch some of the properties of the corresponding symbol A(η).

Following Proposition 2.1 we obtain

(1) that
det(η|A(η)η|A2(η)η) = 0, (2.45)

such that all directions η ∈ S2 are hyperbolic. The corresponding eigenspace is (gener-
ically) given by multiples of (η2,−η1, 0) such that the hyperbolic eigenvalue is

τ1 − λ1

2
(η2

1 + η2
2) + µη2

3. (2.46)
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(2) It remains to look for directions with two hyperbolic eigenvalues. They satisfy η||A(η).
This is true, if η3 = 0 or if η1 = η2 = 0 or if

η2
3 =

λ2 + 2µ− τ1

2λ2 + 4µ+ τ1 − τ2
, (2.47)

provided the latter expression is non-negative. Except in the limiting case τ1 =
λ2 + 2µ, the coupling functions vanish to first order along the corresponding circle. If
τ1 = τ2 = λ2 + 2µ all directions are hyperbolic with two hyperbolic eigenvalues and if
τ1 = λ2 + 2µ 6= τ2 coupling functions vanish to third order.

(3) The matrices A(η) are invariant under rotation. Introducing spherical coordinates on
S2

η =

1
0
0

 cosφ cosψ +

0
1
0

 sinφ cosψ +

0
0
1

 sinψ (2.48)

and using a corresponding (moving) basis for vectors given by

±1√
η2

1 + η2
2

 η2

−η1

0

 , η,
±η3√
1− η2

3

 η1

η2

−η21+η22
η3

 (2.49)

(sign chosen to make them smoothly dependent on η 6= ±(0, 0, 1)>) decomposes A(η)
into (1,2)-block-diagonal structure (independent of the co-ordinate φ). The scalar
block corresponds to the eigenvalue (2.46), while the 2×2 block has trace µ+τ1 cos2 ψ+

τ2 sin2 ψ and determinant µτ1 cos4 ψ + µτ2 sin4 ψ +
τ1τ2−2λ2−λ22

4 sin2 2ψ.

If (τ1 − µ)(τ2 − µ) 6= 0, the 2 × 2 block has distinct eigenvalues for all ψ and therefore the
only degenerate directions are directions where this block has (2.46) as one of its eigenvalues.
This happens if and only if the right hand side of (2.47) is non-negative and on the circle
defined by that equation.

Thus, the previously developed theory is applicable for all directions except the degenerate
ones η1 = η2 = 0 or (2.47). The always existent hyperbolic eigenvalue (2.46) leads to a
decoupling of the thermo-elastic system into two scalar blocks and a (at least formally) 2D
thermo-elastic system.

Due to rotational invariance, it suffices to treat the cut η1 = 0 for handling of degenerate
directions. This will be sketched later.

3. Some special degenerate directions

We want to study neighbourhoods of degenerate directions for some particular cases. To
study degenerate directions in full generality is beyond the scope of this paper. We relate our
approach to the type of singularity of the corresponding Fresnel surface

S = {ξ ∈ Rn | 1 ∈ specA(ξ)}. (3.1)

This surface is in general n-sheeted and for all non-degenerate directions these sheets are
given by

Sj = {ξ ∈ Rn non-deg. |ωj(ξ) = 1} = {ω−1
j (η)η | η ∈ Sn−1 non-degenerate }, (3.2)

while in degenerate points the surface is self-intersecting. For the importance of these sur-
faces in elasticity theory and some interesting properties of them we refer to Duff [4] or the
investigations from Musgrave [12], [13] and Miller-Musgrave [14].
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Figure 3. A cut through the Fresnel surfaces for examples of a cubic and a
hexagonal medium. The material parameter are λ = 1, τ = 4 and µ = 1 for
the picture on the left (cubic) and λ1 = 1, λ2 = 1

5 , τ1 = 4, τ2 = 1 and µ = 3
for the picture on the right (hexagonal).

We remark only one of the general properties of S here. If A(ξ) is polynomial in ξ then
the surface S is algebraic of degree 2n and therefore any straight line intersecting S has at
most 2n intersection points with S. In particular, if the inner sheet Sn does not touch any of
the the outer sheets, it has to be strictly convex.

3.1. General strategy. If we investigate isolated degenerate directions or regular manifolds
of degenerate directions of codimension greater than one we are faced with two major obsta-
cles. Generically, eigenvectors of A(η) can not be chosen continuously in a neighbourhood of
the degenerate direction and therefore a reformulation as system of first order as in (2.7) is
problematic. This problem is related to higher-dimensional perturbation theory of matrices.
It is well-known that in the one-dimensional situation eigenspaces are continuous (see, e.g.,
the book of Kato, [6]) and it can be resolved by introducing polar co-ordinates / normal
co-ordinates around the degenerate directions and a system related to (2.7) can be formu-
lated on a corresponding blown-up space (see, e.g., (3.10) below). Second obstacle are the
multiplicities itself. Eigenvalues and eigenvectors of the constructed system of first order do
not possess asymptotic expansions in powers of |ξ| as |ξ| tends to 0 or∞. However, especially
in the three-dimensional setting we can write full asymptotic expansions in the distance to
the degeneracy uniform in all remaining co-ordinates.

We will discuss the application of this general strategy in detail for conic singularities of
the Fresnel surface appearing for the case of cubic media and give the corresponding results
for uniplanar singularities afterwards. Finally we will consider hexagonal media and show
that they are much simpler in their analytical structure.

3.2. Cubic media, conic singularities. The Fresnel surface for cubic media has eight conic
singularities which are related by the symmetries of the underlying medium. It suffices to
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Figure 4. Cuts of the Fresnel surface for cubic media; on the left hand side
in the plane η3 = 0, on the right for η1 = η2. The parameters are chosen as
τ = 8, λ = 2 and µ = 2.

consider one of them and we choose η̄ = 1√
3
(1, 1, 1)T ∈ S2. Near this direction we introduce

polar co-ordinates (ε, φ) on the sphere S2 by

η =

η1

η2

η3

 =
√

1− ε2 1√
3

1
1
1

+ ε
1√
6

−1
−1
2

 cosφ+ ε
1√
2

 1
−1
0

 sinφ. (3.3)

They allow to blow up the singularity by looking at [0,∞)× S1 instead of R2 as local model

of S2. In order to simplify notation, we apply a diagonaliser M̃ of A(η̄) to our matrices. For
this we choose the unitary matrix

M̃ =
1√
6

√2 −1
√

3√
2 −1 −

√
3√

2 2 0

 (3.4)

(corresponding to the vectors chosen already in (3.3)). The matrix M̃−1A(η)M̃ has a full
asymptotic expansion as ε→ 0 and can be written as

M̃−1A(ε, φ)M̃ = A0 + εA1(φ) +O(ε2), ε→ 0 (3.5)

with matrices

A0 = diag

(
τ + 2λ+ 4µ

3
,
τ + µ− λ

3
,
τ + µ− λ

3

)
, (3.6a)

A1(φ) =
2τ − µ+ λ

3

 cosφ sinφ
cosφ
sinφ

+

√
2(−τ + 2µ+ λ)

3

0
− cosφ sinφ
sinφ cosφ

 .

(3.6b)

Now we can apply the block-diagonalisation procedure (again following [5, Sec. 2.2]) to obtain

the behaviour of eigenvalues and eigenprojections of M̃−1A(ε, φ)M̃ as ε → 0 for all φ. We
restrict consideration to the case where λ+µ 6= 0, such that A0 has two different eigenvalues.
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Proposition 3.1. The eigenvalues κj(ε, φ) and the corresponding eigenprojections of A(ε, φ)
have uniformly in φ full asymptotic expansions as ε→ 0. The main terms are given by

κ1(ε, φ) =
τ + 2λ+ 4µ

3
+O(ε2), (3.7a)

κ2(ε, φ) =
τ + µ− λ

3
+

√
2(−τ + 2µ+ λ)

3
ε+O(ε2), (3.7b)

κ3(ε, φ) =
τ + µ− λ

3
−
√

2(−τ + 2µ+ λ)

3
ε+O(ε2). (3.7c)

Remark 3.1. The exceptional case when τ = λ + 2µ corresponds to isotropic media and is
therefore excluded. In all other cases the two sheets ω2(η) =

√
κ2(η) and ω3(η) =

√
κ3(η)

form a double cone on the Fresnel surface S. Hence, the statement explains the notion of
conical singularity. Note, that the linear terms are independent of φ and therefore the cone
is approximately a spherical cone near the conic point.

Proof. We will only shortly review the main steps. First we (1,2)-block-diagonalise M̃−1A(ε, φ)M̃
(modulo O(εN ) for any N we like). The diagonaliser we are going to construct has the form

I + εN
(1)
1 (φ) + · · · + εN−1N

(N−1)
1 (φ) and as in [5, Sec. 2.2] its terms are given by recursion

formulae. For N
(1)
1 we divide the off-(block-)diagonal terms of A1 by the difference of the

corresponding diagonal entries of A0. This gives as first term

N
(1)
1 (φ) =

2τ − µ+ λ

3(λ+ µ)

 cosφ sinφ
− cosφ
− sinφ

 (3.8)

and allows to cancel the off-(block-)diagonal entries of A1. We skip the further construction
and move to the next step. Since the lower 2×2 block of b-diag1,2A1 has distinct eigenvalues
(namely ±1) we can now perform a diagonalisation scheme in the subspace corresponding
to this block (modulo O(εN )). Again we restrict ourselves to the main terms. A unitary
diagonaliser of the 2× 2-block can be chosen as the unitary matrix

M̃2(φ) =

1

sin φ
2 cos φ2

cos φ2 − sin φ
2

 . (3.9)

After transforming with that matrix we apply the recursive scheme to diagonalise further.
Note that after applying M̃2(φ) the matrix is diagonal modulo O(ε2) and therefore, M̃(I +

εN
(1)
1 (φ))M̃2(φ) = M0(φ) + εM1(φ) + O(ε2) determines the main terms of a diagonaliser of

the matrix A(ε, φ) and we can deduce the statements about the eigenvalue asymptotics. �

3.2.1. System formulation. Let M(ε, φ) be the diagonaliser of A(ε, φ) constructed in Propo-
sition 3.1. Then we consider

V (t, ε, φ, |ξ|) =

(Dt + |ξ|D1/2(ε, φ))M−1(ε, φ)Û(t, ξ)

(Dt − |ξ|D1/2(ε, φ))M−1(ε, φ)Û(t, ξ)

θ̂

 ∈ C7, (3.10)

with ξ = |ξ|η(ε, φ) and D1/2(ε, φ) = diag(ω1(ε, φ), ...) the diagonal matrix containing the

square roots ωj(ε, φ) =
√
κj(ε, φ) of the eigenvalues of A(ε, φ). The vector V satisfies the first
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order system DtV = B(ε, φ, |ξ|)V with B(ε, φ, |ξ|) = B1(ε, φ)|ξ|+B2|ξ|2 given by

B1(ε, φ) =


ω1(ε, φ) iγa1(ε, φ)

ω2(ε, φ) iγa2(ε, φ)
. . .

...
−ω3(ε, φ) iγa3(ε, φ)

− i
2γa1(ε, φ) − i

2γa2(ε, φ) · · · − i
2γa3(ε, φ) 0

 (3.11)

and B2 = diag(0, . . . , 0, iκ). The coupling functions aj(ε, φ) are the components of the vector
M−1(ε, φ)η. From Proposition 3.1 we know that they have asymptotic expansions as ε→ 0.

Remark 3.2. 1. Since M−1(ε, φ) = M̃∗2 (φ)(I − εN (1)
1 (φ))M̃∗ +O(ε2) by our construction it

follows that

a1(ε, φ) = 1 +O(ε2), (3.12a)

a2(ε, φ) = ε
2(µ+ 2λ− τ)

3(λ+ µ)
sin

3φ

2
+O(ε2), (3.12b)

a3(ε, φ) = ε
2(µ+ 2λ− τ)

3(λ+ µ)
cos

3φ

2
+O(ε2). (3.12c)

We know that the coupling functions vanish along three great circles through η̄. We see
that the numbering of the eigenprojections is not consistent along the circles. The coupling
functions a2 and a3 vanish both in the degenerate direction.
2. Since we do not assume that M(ε, φ) is unitary the relation

∑
j a

2
j = 1 does not hold

for these coupling functions. However, M0(φ) is unitary and therefore
∑

j a
2
j = 1 + O(ε) as

already observed.

3.2.2. Real and imaginary parts of eigenvalues. The coefficient matrix B(ε, φ, |ξ|) has the
same structure as B(ξ) in Section 2. Therefore, we can conclude similar statements on
eigenvalues and their behaviour by (a) investigating the characteristic polynomial and (b)
block-diagonalising for small and large |ξ|, respectively.

Proposition 3.2. (1) trB(ε, φ, |ξ|) = iκ|ξ|2 and detB(ε, φ, |ξ|) = iκ|ξ|2 detA(ξ).
(2) B(ε, φ, |ξ|) has purely real eigenvalues for |ξ| 6= 0 if and only if a2(ε, φ)a3(ε, φ) = 0,

i.e., ε = 0 or φ ∈ π
3Z.

(3) B(0, φ, |ξ|) has the real eigenvalues ±ω2,3(0, φ) =
√

3
3 (τ +µ−λ) and three eigenvalues

satisfying Im ν ≥ C if |ξ| ≥ c and Im ν ∼ |ξ|2 if |ξ| < c.
(4) The quotient

a2
2(ε, φ)(ν2

2,3(ε, φ, |ξ|)− κ3(ε, φ)|ξ|2) + a2
3(ε, φ)(ν2

2,3(ε, φ, |ξ|)− κ2(ε, φ)|ξ|2)

(ν2
2,3(ε, φ, |ξ|)− κ2(ε, φ)|ξ|2)(ν2

2,3(ε, φ)− κ3(ε, φ)|ξ|2)
(3.13)

involving the hyperbolic eigenvalues ν±2,3 of B(ε, φ, |ξ|) is smooth and non-vanishing

for fixed values of |ξ|.
Proof. We consider only part (2) to (4). The characteristic polynomial of B is given by an
expression like (2.18). If we assume that eigenvalues are purely real we can split the expression
into real and imaginary part. We consider the imaginary part first, which leads to

κ|ξ|2
3∏
j=1

(ν2 − κj(ε, φ)|ξ|2) = 0. (3.14)
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Therefore, real eigenvalues have to coincide with the square roots of eigenvalues of A(ξ). If
we assume ν2 = κj(ε, φ)|ξ|2) is a root of the characteristic equation, we can divide by the
corresponding factor and obtain if ε 6= 0 (and therefore A is non-degenerate)

a2
j (ε, φ) = 0. (3.15)

If ε = 0 the characteristic polynomial factors as

((ν − iκ|ξ|2)(ν2 − κ̄1|ξ|2)− νγ2|ξ|2)(ν − κ̄2,3|ξ|2)2 = 0 (3.16)

with κ̄1 = 1
3(τ + 2λ+ 4µ) and κ̄2,3 = 1

3(τ +µ−λ). The first factor resembles one-dimensional

thermo-elasticity (with τ2 = κ̄1) and gives three roots with positive imaginary parts subject
to (2.43) and (2.44). Finally (4) follows by collecting the two related terms in the character-
istic equation of form (2.19). The imaginary part of the quotient is given by −κ|ξ|2/ν±2,3 in

hyperbolic/degenerate directions and therefore non-zero. �

The quotient (3.13) may be used to determine asymptotic expansions of the hyperbolic
eigenvalue and its imaginary part as ε→ 0 for fixed |ξ| and φ 6∈ π

3Z. We will follow a different
strategy and diagonalise as ε→ 0 uniform on bounded ξ.

3.2.3. Asymptotic expansion as ε→ 0 uniform in |ξ|. Note first, that B(|ξ|, 0, φ) is indepen-
dent of φ and just the system of one-dimensional thermo-elasticity (2.41) extended by four
additional diagonal entries. Since we need to understand this system first, we are going to
recall some facts about the one-dimensional theory. As |ξ| becomes small/large we already
gave asymptotic expansions of eigenvalues in Section 2.5.3. The bit of information which is
still missing is contained in the following lemma.

Lemma 3.3. The coefficient matrix B(ξ) of the one-dimensional thermo-elastic system given
in (2.41) has for ξ 6= 0 and under the natural assumptions γ, κ, τ > 0 only simple eigenvalues.

Proof. Note that the characteristic polynomial of this matrix B(ξ) is given by

ν3 − iκ|ξ|2ν2 + τ2|ξ|2ν + iτ2κ|ξ|4,

which is invariant under the transform ν 7→ −ν and has alternating imaginary and real
coefficients. From that we conclude that the only possible solutions are of the form ia, b+ ic
and −b + ic for certain real a, b, c. Furthermore, from the general theory of Section 2 it is
clear that a, c > 0. Thus, the only possibility for multiplicities to occur is if b = 0. Plugging
in b = 0 and multiplying the corresponding linear factors gives

ν3 − ν2(ia+ 2ic)− ν(c2 + 2ac) + ic2a.

Comparing coefficients with the above polynomial implies that κ|ξ|2 = −ca/(c + 2a), which
contradicts to the positivity of all quantities involved. �

We write the coefficient matrix B(|ξ|, ε, φ) as sum of homogeneous components in ε

|ξ|−1B(|ξ|, ε, φ) = B(0)(|ξ|, φ) + εB(1)(|ξ|, φ) +O(ε2), (3.17)
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where

B(0)(|ξ|, φ) =



ω̄1 iγ
ω̄2

ω̄2

−ω̄1 iγ
−ω̄2

−ω̄2

− i
2γ − i

2γ iκ|ξ|


, (3.18)

B(1)(|ξ|, φ) =



0 0

δ1 iγδ2 sin 3φ
2

−δ1 iγδ2 cos 3φ
2

0 0

δ1 iγδ2 sin 3φ
2

−δ1 iγδ2 cos 3φ
2

0 − i
2γδ2 sin 3φ

2 − i
2γδ2 cos 3φ

2 0 − i
2γδ2 sin 3φ

2 − i
2γδ2 cos 3φ

2 0


,

(3.19)

and ω̄1 =
√

τ+2λ+4µ
3 , ω̄2 =

√
τ+µ−λ

3 , δ1 = 1√
6

−τ+2µ+λ√
τ+µ−λ and δ2 = 2(µ+2λ−τ)

3(λ+µ) .

As a direct consequence of the previous lemma in combination with the asymptotic expan-
sions of Section 2.5.3 we obtain

Proposition 3.4. Assume, that λ+ µ 6= 0 and γ2 + λ+ µ 6= 0. Then the matrix B(0)(|ξ|, φ)
has uniformly separated eigenvalues in |ξ| ∈ R, φ ∈ S1 (where ±ω̄2 are of constant multiplicity
two).

Now we can apply several steps of diagonalisation based on the scheme of [5, Sec. 2]. At
first we apply the diagonaliser of the main part. This has only effects on the two entries related
to ω̄1 and the last row/column and determines the eigenvalues ν0(|ξ|, ε, φ) and ν±1 (|ξ|, ε, φ)
modulo ε2. Furthermore, Proposition 3.4 allows to (1, 2, 1, 2, 1)-block-diagonalise modulo
O(εN ), N arbitrary.

Finally we can investigate the remaining 2 × 2-blocks and diagonalise again because the
ε-homogeneous entries ±δ1ε are distinct (trivially uniform in |ξ| and φ).

Proposition 3.5. Assume, that λ+µ 6= 0 and γ2 +λ+µ 6= 0. The eigenvalues of B(|ξ|, ε, φ)
have uniformly in |ξ| and φ full asymptotic expansions as ε → 0. The first main terms are
given as

ν0(|ξ|, ε, φ) = ν̌0(|ξ|) + |ξ|O(ε2), (3.20a)

ν±1 (|ξ|, ε, φ) = ν̌±1 (|ξ|) + |ξ|O(ε2), (3.20b)

ν±1,±2

2/3 (|ξ|, ε, φ) = ±1ω̄2|ξ| ±2 δ1|ξ|ε+ |ξ|O(ε2) (3.20c)

where ν̌0(|ξ|) and ν̌±1 (|ξ|) are the eigenvalues of the one-dimensional thermo-elastic system
with propagation speed ω̄1 and the signs ±1 and ±2 are independent of each other.

Remark 3.3. The statement holds true uniform in |ξ|. However, it is only of use as long as
the error terms |ξ|εN are smaller than the size of the eigenvalues. For |ξ| → 0 the eigenvalues
of the one-dimensional thermo-elastic system behave like ν̌0(|ξ|) ∼ |ξ|2 and ν̌±1 (|ξ|) ∼ ±|ξ|.
Hence, the statement of (3.20a) is only of use if |ξ|ε2 � |ξ|2, i.e. if ε2 � |ξ|. For |ξ| → ∞
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we know similarly ν̌0(|ξ|) ∼ |ξ|2 and ν̌±1 (|ξ|) ∼ ±|ξ|, which in turn implies that the expansion
determines the behaviour of the eigenvalues.

This restriction is by no means a severe one; the expansion is only of interest for the
’degenerate’ eigenvalues ν±1,±2

2/3 (|ξ|, ε, φ) (for which no such restriction appears).

3.2.4. Diagonalisation for small and large |ξ|. To complete the picture we want to give some
comments on expansions for small and large values of |ξ| under the same assumptions as in
Proposition 3.5. Using the ideas from [23] we can employ the (block) diagonalisation scheme
to separate the three non-degenerate eigenvalues from the two degenerate ones asymptotically
and give full asymptotic expansions for them as |ξ| tends to zero or infinity. The obtained
expressions coincide with the formulae from Propositions 2.5 and 2.7. It remains to under-
stand the behaviour of the remaining 2× 2-blocks. This can be done directly by solving the
characteristic polynomial as in [16, Prop. 2.7] or by a second diagonalisation scheme.

We focus on the latter idea and consider the case of small |ξ| first. The 2× 2-blocks have
the form

f0(|ξ|, ε, φ)I +

(
δ0(|ξ|, ε, φ)

−δ0(|ξ|, ε, φ)

)
+O(|ξ|2) (3.21)

with a function δ0(|ξ|, ε, φ) ∼ ε|ξ|. If we restrict the consideration to the zone

Z0(c) = {(|ξ|, ε, φ) : |ξ| ≤ cε, ε� 1}, (3.22)

the remainder can be written as ε|ξ|O(ε−1|ξ|) and the standard diagonalisation scheme applied
to the last two terms gives full asymptotic expansions in powers of ε−1|ξ| as ε−1|ξ| → 0,

f0(|ξ|, ε, φ)± δ0(|ξ|, ε, φ) + ....+ ε|ξ|O(ε−N |ξ|N ). (3.23)

A similar idea applies for large |ξ| in the zone

Z∞(N) = {(|ξ|, ε, φ) : ε|ξ| ≥ N, ε� 1}. (3.24)

Based on

f∞(|ξ|, ε, φ)I +

(
δ∞(|ξ|, ε, φ)

−δ∞(|ξ|, ε, φ)

)
+O(1) (3.25)

with a function δ∞(|ξ|, ε, φ) ∼ ε|ξ| it gives asymptotic expansions in powers of ε|ξ| as ε|ξ| → ∞.

3.3. Cubic media, uniplanar singularities. The Fresnel surface for cubic media has six
uniplanar singularities. Again they are equivalent and it suffices to consider the neighbour-
hood of η̄ = (1, 0, 0)T ∈ S2.

We introduce polar co-ordinates near η̄. Let ε ≥ 0 and φ ∈ [−π, π). Then we set

η =

η1

η2

η3

 =
√

1− ε2

1
0
0

+ ε cosφ

0
1
0

+ ε sinφ

0
0
1

 , (3.26)

and use an asymptotic expansion of A(η) as ε→ 0

A(η) = A0 + εA1(φ) + ε2A2(φ) +O(ε3) (3.27)
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with coefficients

A0 = diag(τ, µ, µ) (3.28a)

A1(φ) = (λ+ µ)

 cosφ sinφ
cosφ
sinφ

 (3.28b)

A2(φ) = (τ − µ)

−1
cos2 φ

sin2 φ

+
λ+ µ

2

0
sin 2φ

sin 2φ

 (3.28c)

to deduce properties of the eigenvalues and eigenprojections of A(η) near η̄. We restrict
considerations to the case when τ 6= µ. Then the following statement follows again by the
two-step diagonalisation procedure (like in the conical case and as developed in [5], [16]).

Proposition 3.6. Assume λ+µ 6= 0, τ 6= µ and τ 6= λ+2µ. Then the eigenvalues κj(η) and
the corresponding eigenprojections have uniformly in φ full asymptotic expansions as ε → 0.
The main terms are given by

κ1(η) = τ − Cε2 +O(ε3), (3.29a)

κ2(η) = µ+
1

2

(
C +

√
C2 − (C2 −D2) sin2(2φ)

)
ε2 +O(ε3), (3.29b)

κ3(η) = µ+
1

2

(
C −

√
C2 − (C2 −D2) sin2(2φ)

)
ε2 +O(ε3), (3.29c)

where

C =
(τ − µ)2 − (λ+ µ)2

τ − µ
, D = λ+ µ (3.30)

Remark 3.4. This statement reflects what we mean by an uniplanar singularity. Two of the
eigenvalues coincide up to second order.

Proof. We follow the diagonalisation scheme. A0 is already diagonal, A1 does not contain
(1,2)-block diagonal entries. To get expansions for the eigenvalues we have to apply two steps
of block-diagonalisation. First we treat A1 by the aid of

N
(1)
1 (φ) =

λ+ µ

τ − µ

 − cosφ − sinφ
cosφ
sinφ

 , (3.31)

such that I + εN
(1)
1 (φ) block-diagonalises the matrix modulo ε2. This preserves A0 and

0 = b-diag1,2A1 and gives the new 2-homogeneous component

A2 +A1N
(1)
1 , A1N

(1)
1 =

(λ+ µ)2

τ − µ
diag(1,− cos2 φ,− sin2 φ). (3.32)

The starting terms of the expansion of the first eigenvalue can be read directly from these
matrices. For the remaining two we have to diagonalise the lower 2× 2 block. This block has
the form (

C cos2 φ D sinφ cosφ
D sinφ cosφ C sin2 φ

)
(3.33)

with C, D from (3.30). Eigenvalues of this matrix are uniformly separated if the condition

C2 > (C2 −D2) sin2(2φ), i.e. C 6= 0, D 6= 0 (3.34)
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is satisfied. Under this assumption the full diagonalisation scheme works through and the
main terms can be calculated directly and give (3.29). For completeness we also give a
unitary diagonaliser of the matrix (3.33), namely

M2(φ) =
1√

2D2 sin2(2φ) + 2C2 cos2(2φ) + 2C cos 2φ
√

:

(
C cos 2φ+

√
: −D sin 2φ

D sin 2φ C cos 2φ+
√

:

)
=

(
m1(φ) m2(φ)
−m2(φ) m1(φ)

)
(3.35)

where
√

: =
√
C2 − (C2 −D2) sin2(2φ), φ 6= π

2 ,
3π
2 . Expressions are extended by continuity.

�

3.3.1. System form. Again we use the diagonaliser M(ε, φ) of A(ε, φ) constructed in Propo-
sition 3.6 to reformulate the thermo-elastic system as system of first order. Formulae (3.10)
and (3.11) give the corresponding representation.

Remark 3.5. 1. Since M−1(ε, φ) = diag(1,M∗2 (φ))(I − εN (1)
1 (φ)) +O(ε2) in the notation of

the proof of Proposition 3.6 it follows that the coupling functions satisfy

a1(ε, φ) = 1 +O(ε2) (3.36a)

a2(ε, φ) = ε
τ − λ− 2µ

τ − µ
(m1(φ) cosφ+m2(φ) sinφ) +O(ε2) (3.36b)

a3(ε, φ) = ε
τ − λ− 2µ

τ − µ
(m1(φ) sinφ−m2(φ) cosφ) +O(ε2) (3.36c)

Since τ 6= λ+ 2µ the function a2(φ) vanishes only for φ = k π2 , k ∈ Z, while a3(φ) vanishes for
φ = (2k + 1)π4 , k ∈ Z.
2. Note that in contrast to the conic situation the eigenvalues coincide to second order in the
degenerate direction, while the coupling functions still vanish to first order (if we approach
the degeneracy from parabolic directions).

3.3.2. Asymptotic expansion of eigenvalues as ε→ 0. We write the coefficient matrixB(|ξ|, ε, φ)
as sum of homogeneous components in ε, cf. (3.17). This gives

B(0)(|ξ|, φ) =



√
τ iγ√

µ √
µ
−
√
τ iγ
−√µ

−√µ
− i

2γ − i
2γ iκ|ξ|


(3.37)

B(1)(|ξ|, φ) =



0

iγa
(1)
2 (φ)

iγa
(1)
3 (φ)
0

iγa
(1)
2 (φ)

iγa
(1)
3 (φ)

0 i
2γa

(1)
2 (φ) i

2γa
(1)
3 (φ) 0 i

2γa
(1)
2 (φ) i

2γa
(1)
3 (φ) 0


(3.38)
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Figure 5. Cut of the Fresnel surface for hexagonal media, η2 = 0. The
parameters are chosen as τ1 = 4, τ2 = 10, λ1 = 2, λ2 = 4, µ = 2. The
complete surface is obtained by rotation along the vertical axis.

and B(2)(|ξ|, φ) has entries on the diagonal, in the last row and last column. In order to

apply a block-diagonalisation as ε → 0 we assume that the matrix B(0)(|ξ|, φ) has as many
distinct eigenvalues as possible. This is ensured if µ 6= τ , µ 6= τ + γ2 and we can (1,2,1,2,1)-
block-diagonalise this matrix family. Note, that due to the structure of the last rows and
columns, the system decouples modulo ε2 into a one-dimensional thermo-elastic system and
one containing the elastic eigenvalues. The coupling comes only into play for the ε3 entries.

Proposition 3.7. Assume µ 6= τ , µ 6= τ + γ2. Then the eigenvalues and eigenprojections of
B(|ξ|, ε, φ) have full asymptotic expansions as ε→ 0. The main terms are given by

ν0(|ξ|, ε, φ) = ν̌0(|ξ|) + |ξ|O(ε3), (3.39a)

ν±1 (|ξ|, ε, φ) = ν̌±1 (|ξ|) + |ξ|O(ε3), (3.39b)

ν±1,±2

2/3 (|ξ|, ε, φ) = ±1
√
µ|ξ|+ C ±2

√
C2 − (C2 −D2) sin2(2φ)

4
√
µ

|ξ|ε2 + |ξ|O(ε3) (3.39c)

where ν̌0(|ξ|) and ν̌±1 (|ξ|) are eigenvalues of the one-dimensional thermo-elastic system with
parameter

√
τ . The signs ±1 and ±2 are independent and the parameters C and D are given

by (3.30).

Remark 3.6. Similar to Proposition 3.5 this statement is uniform in |ξ|. It will be of
particular importance for us that the hyperbolic eigenvalues ν±2/3 coincide up to second order

in ε with the corresponding (roots of) eigenvalues of the elastic operator. This will be the key
observation to transfer stationary phase estimates from elastic systems to the thermo-elastic
one.

3.4. Hexagonal media. Finally we want to discuss the case of hexagonal media. The elastic
operator defined by (1.4)–(1.5) is invariant under rotations in x3-direction. We will make use
of this fact and reduce considerations to a two-dimensional situation corresponding to cross-
sections of the Fresnel surface.

As already pointed out in Section 2.5.4 degenerate directions are ±(0, 0, 1)>, which are
uniplanar. They could be handled similar to the cubic case, but rotational invariance makes
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estimates simpler. There are further circles of degenerate directions if

τ2 − 2τ1 ≥ λ2 + 2µ. (3.40)

We exploit rotational symmetry and consider the system only in the frequency hyperplane
η1 = 0. Then it is possible to express the eigenvectors rj(η) corresponding to eigenvalues
κj(η) smoothly and the thermo-elastic system can be reformulated as system of first order
in full analogy to the general treatment in Section 2. The derived asymptotic expansions for
eigenvalues and the description of their behaviour transfers away from the degeneracy and
has to be equipped with an additional description near these degenerate directions.

Apart from the ξ3-axis it is possible to find smooth families of eigenvectors rj(η) of A(η).
This follows directly from rotational invariance combined with one-dimensional perturbation
theory of matrices, [6]. If we assume that the frequency support of initial data and therefore of
the solution U , θ is conically separated from the uniplanar directions we can follow Section 2
and rewrite as first order system in V (t, ξ) with coefficient matrix B(ξ) given by (2.9) and
of (1,1,5)-block structure. In what follows, we will ignore the scalar hyperbolic blocks and
consider the remaining 5× 5 matrix.

Based on the discussions from Section 2.5.4 we know that this 5×5 block is non-degenerate
in the sense that its 1-homogeneous part has distinct eigenvalues if (τ1 − µ)(τ2 − µ) 6= 0. We
assume this in the sequel. But this means that the theory of Section 2 is applicable and gives
a full discription of eigenvalues and eigenprojections and we are done.

Near the uniplanar directions, i.e., on the ξ3-axis, we follow the same approach as for cubic
media. We introduce polar co-ordinates around this direction and construct expressions for
the corresponding asymptotics. There is one major simplification, due to rotational invariance
the construction is independent of the angular variable.

4. Dispersive estimates

We will show how to use the information obtained in Sections 2 and 3 to derive Lp–Lq

decay estimates for solutions to thermo-elastic systems. Some of the ideas we present are
general in the sense that they can be applied to arbitrary space dimensions, however, our
moin focus will be the three-dimensional case and the examples considered in Section 3.

The estimates we have in mind are micro-localised to (a) non-degenerate parabolic, (b)
non-degenerate hyperbolic or (c) degenerate directions. The first two situations generalise
the consideration of [16], [22] taking also into account the estimates due to Sugimoto [19],
[20], while the treatment of degenerate directions is inspired by the work of Liess [7], [8], [10].

4.1. Non-degenerate directions. We will consider two situations and micro-localise solu-
tions to either open sets of parabolic directions or tubular neighbourhoods of compact parts
of regular submanifolds of hyperbolic directions.

4.1.1. Estimates in parabolic directions and for parabolic modes. Let first ψ, ψ̃ ∈ C∞0 (Sn−1) be

supported in U with ψ̃ = 1 on suppψ and χ ∈ C∞(R+) a cut-off function satisfying χ(s) = 0

for s ≤ ε and χ(s) = 1 for s ≥ 2ε. We extend both ψ and ψ̃ as 0-homogeneous functions to
Rn. Then we consider the solution to the first order system

DtV = B(D)V, V (0, ·) = ψ̃(D)V0, (4.1)

with data V0 ∈ S(Rn;C2n+1). Note, that this is well-defined and B(ξ) needs only to be defined

on supp ψ̃.
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Lemma 4.1 (Parabolic estimate). Assume that suppψ is contained in the set of parabolic
directions. Then the solutions to (4.1) satisfy the a-priori estimates

‖χ(|D|)ψ(D)V (t, ·)‖q . e−Ct‖V0‖p,r, (4.2a)

‖(1− χ(|D|))ψ(D)V (t, ·)‖q . (1 + t)
−n

2
( 1
p
− 1
q

)‖V0‖p (4.2b)

for all 1 ≤ p ≤ 2 ≤ q ≤ ∞ and with Sobolev regularity r > n(1/p− 1/q).

Sketch of proof. The proof of this estimate is straightforward from the two-dimensional situ-
ation considered in [16]. For small frequencies we write the solution V as sum

V (t, x) =
∑

ν(ξ)∈specB(ξ)

eitν(D)Pν(D)V0, (4.3)

Pν the corresponding eigenprojections. We know that ‖Pν(ξ)‖ . 1 and Im ν(ξ) ∼ |ξ|2 by

Proposition 2.5. Now each of the appearing terms can be estimated using the Lp–Lp
′

bound-
edness of the Fourier transform (for p ∈ [1, 2]) and Hölder inequality. Similarly, the represen-
tation (4.3) in combination with the bound Im specB(ξ) ≥ C gives exponential decay of L2

and Hs norms and this combined with Sobolev embedding yields the desired estimate.
For intermediate frequencies we may have to deal with multiplicities and resulting singu-

larities of the spectral projections. Instead of (4.3) we use a spectral calculus representation
which implies

|V̂ (t, ξ)| ≤ e−Ct
1

2π

∫
Γ
‖(ζ −B(ξ))−1‖dζ . e−Ct (4.4)

based on the compactness of the relevant set of frequencies ξ and the bound on the imaginary
part due to Corollary 2.8 / Proposition 2.9. Here, Γ is a smooth curve encircling the family
of parabolic eigenvalues for the relevant ξ. �

If we consider hyperbolic directions we know that the parabolic eigenvalues are separated
from the hyperbolic ones and we can use the spectral projection associated to the group of
parabolic eigenvalues to separate them from the hyperbolic one(s). In this case the estimate
of the above theorem is valid for the corresponding ‘parabolic modes’ of the solution. So we
can restrict consideration to hyperbolic eigenvalues near hyperbolic directions.

4.1.2. Treatment of non-degenerate hyperbolic directions. We consider only the for us inter-
esting case when hyperbolic directions form part of a regular submanifold of Sn−1 and cou-
pling functions vanish to first order, i.e., we assume that the corresponding coupling function
aj : Sn−1 ⊃ U → R satisfies

daj(η) 6= 0 when aj(η) = 0, η ∈ U . (4.5)

This implies that Mj = {η ∈ U : aj(η) = 0} is regular of dimension n − 2, the normal
derivative ∂naj(η) 6= 0 never vanishes and aj(η) ≤ ε defines a tubular neighbourhood of
Mj with a natural parameterisation. The desired dispersive estimate is related to geometric
properties of the section S(Mj) of the Fresnel surface lying directly over Mj ,

S(Mj) = {ω−1
j (η)η : η ∈Mj} = Sj ∩ coMj . (4.6)

Here coMj denotes the cone over Mj . For dimensions n ≥ 4 we have to distinguish between
different cases, depending on whether the cross-section S(Mj) of the Fresnel surface satisfies
a convexity assumption or not. By the latter we mean that any intersection of Sj with a
hyperplane tangent to coMj is convex in a neighbourhood of S(Mj).
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If this convexity assumption is satisfied (or if n = 3 and therefore dimMj = 1), we define
the convex Sugimoto index of S(Mj) as maximal order of contact of S(Mj) with hyperplanes
normal to coMj .

Theorem 4.2 (Hyperbolic estimate, convex case). Assume that ψ is supported in a suffi-
ciently small tubular neighbourhood of the regular hyperbolic submanifold Mj and that S(Mj)

satisfies the convexity assumption. Let further γj = γ(S(Mj)) be defined as above.

Then the solutions to (4.1) satisfy the a-priori estimate

‖ψ(D)Pνj (D)V (t, ·)‖q . (1 + t)
−( 1

2
+n−2

γj
)( 1
p
− 1
q

)‖V0‖p,r (4.7)

for all p ∈ (1, 2], pq = p+ q and with Sobolev regularity r > n(1/p− 1/q).

Proof. First, we outline the strategy of the proof. We split variables in the tubular neighbour-
hood of the regular hyperbolic submanifold Mj , one coordinate being the defining function
aj(η) and the other parameterising points on Mj . We have to combine a (simple) parabolic
type estimate in normal directions taking care of the imaginary part of the phase with sta-
tionary phase estimates for the integration along Mj . The stationary phase estimate is done
first and follows the lines of [19], [20] along with [18, Sect. 5].

It is sufficient to show the estimate for t ≥ 1. We follow the treatment of Brenner [2]
and decompose the Fourier integral representing the corresponding hyperbolic modes of the
solution V into dyadic pieces. For large and intermediate frequencies this amounts to estimate
for all k ∈ N0

Ik(t) = sup
z∈Rn

∣∣∣∣∣
∫ η̃=ε

η̃=−ε

∫
η̌∈Mj

∫
2k−1≤|ξ|≤2k+1

eit|ξ|(z·η+|ξ|−1νj(ξ))pj(ξ)χk(ξ)|ξ|n−1−rd|ξ|dη̌dη̃

∣∣∣∣∣ (4.8)

with the notation z = x/t, ξ = |ξ|η, η ' (η̌, η̃) with η̌ ∈ Mj and η̃ = aj(η). The amplitude
pj(ξ) arises from the spectral projector Pνj (D) and the phase νj(ξ) is complex-valued with

Im νj(ξ) ∼ η̃2 uniform in ξ ∈ suppχk and k ∈ N0.
If z + ∇ξνj(ξ) 6= 0, ξ/|ξ| ∈ Mj or if z is not near a direction from Mj , the principle of

non-stationary phase implies and gives a rapid decay. It suffices to restrict to z corresponding
to stationary points. We use the method of stationary phase to estimate the integral over
Mj , this can be done uniformly over ξ and η̃, provided ε is chosen small enough and yields
an estimate of the form ∣∣∣∣∣

∫
η̌∈Mj

. . . dη̌

∣∣∣∣∣ ≤ Ct−n−2
γj |ξ|n−1−r−n−2

γj e−cη̃
2t (4.9)

uniform in k and |η̃| ≤ ε. In order to obtain this estimate we apply Ruzhansky’s multi-
dimensional van der Corput lemma, [17], based on the uniformity of the Sugimoto index
γ(Sj ∩ co {η : aj(η) = η̃, η ≈ η̌}) for small η̃ and the uniform bounds on the appearing
amplitude. Similar to [16] the imaginary part of the phase can be incorporated in the estimate

for the amplitude. Integration over η̃ yields a further decay of t−1/2, while integrating over ξ
and using |ξ| ∼ 2k yields

Ik(t) ≤ Ct
− 1

2
−n−2

γj 2
k(n−r−n−2

γj
)
. (4.10)

Hence, we need r ≥ n− n−2
γj

(compared to the elasticity or wave equation with r ≥ n− n−1
γ )

to apply Brenner’s argument and obtain the desired estimate for the high frequency part.
The required regularity follows from using Sobolev embedding for small t.
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The treatment of small frequencies is somewhat simpler. We do not apply a dyadic de-
composition, but still have to use a stationary phase argument along Mj combined with the
behaviour of the imaginary part of the phase away from it,

I(t) = sup
z∈Rn

∣∣∣∣∣
∫ η̃=ε

η̃=−ε

∫
η̌∈Mj

∫
|ξ|≤1

eit|ξ|(z·η+|ξ|−1νj(ξ))pj(ξ)χ(ξ)|ξ|n−1d|ξ|dη̌dη̃

∣∣∣∣∣
≤ Ct−

n−2
γj

∫
|ξ|≤1

∫ η̃=ε

η̃=−ε
e−cη̃

2t|ξ|2 |ξ|dη̃|ξ|n−2−n−2
γj d|ξ| ≤ Ct−

1
2
−n−2

γj .

�

Without proof we comment on the non-convex situation. If the convexity assumption is
violated we have to replace the convex Sugimoto index by a corresponding non-convex one
γ0(S(Mj)). This is defined as the maximum over the minimal contact orders of S(Mj) with
hyperplanes normal to the cone coMj , the maximum taken over all points of S(Mj). The price
we have to pay for non-convexity is a loss of decay.

Theorem 4.3 (Hyperbolic estimate, non-convex case). Assume that ψ is supported in a
sufficiently small tubular neighbourhood of the regular hyperbolic submanifold Mj and that
S(Mj) does not satisfy the convexity assumption. Let further γ̃j = γ0(S(Mj)) be the non-convex
Sugimoto index.

Then the solutions to (4.1) satisfy the a-priori estimate

‖ψ(D)Pνj (D)V (t, ·)‖q . (1 + t)
−( 1

2
+ 1
γ̃j

)( 1
p
− 1
q

)‖V0‖p,r (4.11)

for all p ∈ (1, 2], pq = p+ q and with Sobolev regularity r > n(1/p− 1/q).

4.1.3. Application to cubic and hexagonal media. Because of its importance later on we re-
mark that in our applications to three-dimensional thermo-elasticity the manifolds Mj are
parts of circles on S2, i.e. can be seen as intersections of S2 with a cone. So we have to look
at the corresponding sections of the Fresnel surface. In this case γj is just the maximal order
of tangency between the curve S(Mj)and its tangent lines. If the curvature of this curve is
nowhere vanishing, then γj = 2. Furthermore, algebraicity of S of order 6 implies that the
highest order of contact is 6 and therefore γj ∈ {2, . . . , 6} is the admissible range of these
indices.

For cubic media there are two types of regular hyperbolic submanifolds. One is up to
symmetry given by the circle η3 = 0 on S2 and the corresponding eigenvalue is equal to µ.
Thus the section of the Fresnel surface is just a circle and therefore its curvature is nowhere
vanishing. Similarly, for intersections of the Fresnel surface with the plane η2 = η3 we obtain
the hyperbolic eigenvalue κ = η2

2(τ − λ) + η2
1µ. It is a simple calculation3 to show that the

curvature of the corresponding section of the Fresnel surface is nowhere vanishing as soon as
λ 6= τ and µ 6= 0. Hence, γj = 2 in both cases.

For hexagonal media regular hyperbolic submanifolds correspond to circles on the Fresnel
surface. Again, γj = 2.

4.2. Cubic media in 3D. We want to discuss the derivation for estimates near degenerate
directions by the example of cubic media in three-dimensional space and combine them with
the general estimates from Section 4.1.

3Parametrising by the angle, the hyperbolic eigenvalue is given by κ(φ) = µ+ τ−λ−2µ
2

sin2 φ and it remains

to check that ∂2
φ

√
κ(φ) +

√
κ(φ) 6= 0, see [22] for such a calculation.
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4.2.1. Conic points. The following statement resembles [8, Thm. 1.5]. In [10, Sect. 3] a
stronger decay rate is obtained for some conic degenerations, but they require a sufficiently
bent cone and we can not guarantee that in our case.

Theorem 4.4 (Conic degeneration). Assume U1, U2 and θ0 are micro-locally supported in a

sufficiently small conical neighbourhood of a conically degenerate point on Ŝ2. Then the corre-
sponding solution to the thermo-elastic system for cubic media satisfies the a-priori estimate

‖
√
A(D)U(t, ·), Ut(t, ·), θ(t, ·)‖q . (1 + t)

− 1
2

( 1
p
− 1
q

)‖
√
A(D)U1, U2, θ0‖p,r (4.12)

for p ∈ (1, 2], pq = p+ q and r > 3(1/p− 1/q).

Proof. The main idea is that the proof of [7] uses polar co-ordinates around the singularities
of the Fresnel surface similar to our treatment in Section 3. Stationary phase arguments are
applied in tangential direction and are uniform for small radii, while the final estimate follows
after integration over the remaining variables.

It suffices to prove the statement for t ≥ 1, the small time estimate is a direct consequence
of Sobolev embedding theorem in combination with the obvious energy estimate. Similar
to the hyperbolic estimate discussed before, we apply a dyadic decomposition of frequency
space (localised to a small conic neighbourhood of the degenerate direction). The estimate
for single dyadic components follows [7] resp. [8, Thm. 1.5]; the only thing we have to check
is that the necessary assumptions are satisfied uniform with respect to |ξ| and k ∈ N. We
consider

Ik(t) = sup
z∈R3

∣∣∣∣ ∫ ε̃

0

∫ 2π

0

∫
2k−1≤|ξ|≤2k+1

eit|ξ|(z·η+|ξ|−1νj(|ξ|,ε,φ))

× pj(|ξ|, ε, φ)χk(|ξ|)|ξ|2−rd|ξ|dφεdε
∣∣∣∣, (4.13)

where η ∈ S2 denotes the point with polar co-ordinates (ε, φ) near the conic degenerate direc-
tion and ξ = |ξ|η. The amplitude pj(|ξ|, ε, φ) arises from the spectral projector (given in terms
of the diagonaliser) constructed in the blown-up polar co-ordinates and χk(ξ) corresponds to
the dyadic decomposition. The complex phase νj(|ξ|, ε, φ) is described in Proposition 3.5. Its
imaginary part is non-negative and vanishes to second order in ε = 0 as well as for three
hyperbolic manifolds emanating from the conic degenerate point. Again we may treat this
imaginary part as part of the amplitude and apply stationary phase estimates for the integral
with respect to φ. As the approximation of the phase modulo O(ε2) is independent of φ and
uniform in |ξ| this yields ∣∣∣∣∫ 2π

0
. . . dφ

∣∣∣∣ . t− 1
2 |ξ|

3
2
−rε

1
2 (4.14)

uniform in |ξ|, k and 0 ≤ ε ≤ ε̃. There is no further benefit from the imaginary part (as
there can not be a lower bound with respect to ε) and integrating with respect to |ξ| and ε
concludes the estimate for Ik(t). Similarly, we estimate the small frequency part

I(t) = sup
z∈R3

∣∣∣∣ ∫ ε̃

0

∫ 2π

0

∫
|ξ|≤1

eit|ξ|(z·η+|ξ|−1νj(|ξ|,ε,φ))pj(|ξ|, ε, φ)χ(|ξ|)|ξ|2d|ξ|dφεdε
∣∣∣∣ ≤ Ct− 1

2 ,

(4.15)
such that Brenner’s method again yields the desired decay estimate. �
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4.2.2. Uniplanar points. The treatment of uniplanar degeneracies follows [8]. We have to
make one further additional assumption related to the shape of certain curves on the Fresnel
surface near the degenerate point. To be precise, we either require that

Ω ∩ S ∩Π has non-vanishing curvature (4.16)

for Ω ⊂ Rn an open neighbourhood of the uniplanarly degenerate point and for any plane Π
sufficiently close and parallel to the common tangent plane at the unode. This condition is
equivalent to the technical assumption (1.12) made in [10] If (4.16) is violated, we need to
consider Sugimoto indices γu = γ(Ω ∩ S ∩Π ⊂ Π), i.e., contact orders of these planar curves
with its tangent planes combined with a uniformity assumption. Under assumption (4.16)
the index is given by γu = 2.

For cubic media we have to use the statement of Proposition 3.6 to determine the index
γu. Using the notation of (3.30), it suffices to calculate the indices of the indicator curves

determined by ε2
(
µ+ C ±

√
C2 cos2(2φ) +D2 sin2(2φ)

)
= 1. This yields

γu ∈ {2, 3, 4} (4.17)

In the nearly isotropic case we have γu = 2, away from it γu = 3. Both are generic, while
the borderline case with γu = 4 is not. The asymptotic construction of the eigenvalues
and eigenprojections near the uniplanarly degenerate point of Proposition 3.7 yields that the
assumption is satisfied uniformly for the phase functions appearing in all dyadic components
of the operator.

Theorem 4.5 (Uniplanar degeneration). Assume U1, U2 and θ0 are micro-locally supported in

a sufficiently small conical neighbourhood of a uniplanarly degenerate point on Ŝ2. Let further
γu be the index of the uniplanar point. Then the corresponding solution to the thermo-elastic
system for cubic media satisfies the a-priori estimate

‖
√
A(D)U(t, ·), Ut(t, ·), θ(t, ·)‖q . (1 + t)

−( 1
2

+ 1
γu

)( 1
p
− 1
q

)‖
√
A(D)U1, U2, θ0‖p,r (4.18)

for p ∈ (1, 2], pq = p+ q and r > 3(1/p− 1/q).

Sketch of proof. We will sketch the major differences to the treatment of conic degeneracies.
We will again use polar co-ordinates and estimate corresponding dyadic components (4.13),
where now νj(|ξ|, ε, φ) is determined by Proposition 3.7. The imaginary part of νj(|ξ|, ε, φ)
vanishes to third order and is of no benefit, while the real part coincides to third order
with the corresponding elastic eigenvalue. This allows to use estimates from [8] and [10,
Sect. 4], the main difference to the previous situation is that we now use stationary phase
estimates for both, the angular and the radial integral. The proof itself then coincides with
the corresponding proof for cubic elasticity, cf. [11].

Using a change of variables the integral is written in the new variables ωj(η)|ξ| (i.e., roughly
Re νj) and η/ωj(η) ∈ Sj . In this form the phase splits and the crucial estimate is just a Fourier
transform of a density carried by the sheet of the Fresnel surface (with possible singularity
in the unode). This is calculated by introducing distorted polar co-ordinates on the surface.
As level sets we use cuts of the surface by planes parallel to the common tangent plane.
Then we will at first apply the method of stationary phase to the radial variable in these
co-ordinates. These stationary points are non-degenerate and we use the obtained first terms
in the asymptotics for a second stationary phase argument in the angular variables. The
condition (4.16) would imply again that stationary points are non-degenerate and we are
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done, while if (4.16) is violated we use the lemma of van der Corput instead to prove the
estimate. �

4.2.3. Collecting the estimates. It remains to collect all the estimates into a final statement
for cubic media. Parabolic directions are treated by Lemma 4.1; hyperbolic manifolds away
from degenerate points are covered by Theorem 4.2. The remaining 24 degenerate directions
fall into either of the previously discussed categories and estimates follow from Theorem 4.4
and 4.5. The resulting estimates are collected in Table 1.

small frequencies large frequencies

parabolic directions (1 + t)−
3
2 e−Ct

hyperbolic directions (1 + t)−1 (1 + t)−1

conic degeneracies (1 + t)−
1
2 (1 + t)−

1
2

uniplanar degeneracies (1 + t)
− 1

2
− 1
γ (1 + t)

− 1
2
− 1
γ

γ ∈ {2, 3, 4} γ ∈ {2, 3, 4}

Table 1. Contributions to the dispersive decay rate for cubic media.

Corollary 4.6 (Cubic decay rates). Cubic media in three space dimensions satisfy the dis-
persive type estimate

‖
√
A(D)U(t, ·), Ut(t, ·), θ(t, ·)‖Lq(Rn) . (1 + t)

− 1
2

( 1
p
− 1
q

)‖
√
A(D)U1, U2, θ0‖p,r (4.19)

for all data U1 ∈ W p,r+1(R3;C3), U2 ∈ W p,r(R3;C3) and θ ∈ W p,r(R3), provided p ∈ (1, 2],
pq = p+ q and r > 3(1/p− 1/q).

Decay rates improve if the Fourier transform of the initial data vanishes in the conically
degenerate directions. This could be achieved by posing particular symmetry conditions.

4.3. Hexagonal media. The treatment of hexagonal media is somewhat simpler. The uni-
planar degenerations trivially satisfy the assumption (4.16) and therefore yield the decay
rates specified by the above theorem. The additionally appearing manifolds of degenerate
directions are trivially resolved as there are smooth families of eigenprojections associated to
both eigenvalues (as we stay away from the uniplanar points) and we can therefore treat the
modes separately.

One of them is hyperbolic for all directions, we refer to it as the genuine hyperbolic mode.
The sheet of the Fresnel surface corresponding to this mode, i.e., to the eigenvalue κ(η) =
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τ1−λ1
2 (η2

1 + η2
2) + µη2

3 is easily seen to be strictly convex for all choices of the parameter and

gives therefore t−1. The proof is similar to that for the wave equation, see [2].
The parabolic modes away from the degenerate hyperbolic directions are treated as before,

while the remaining degenerate hyperbolic manifold is treated by the estimate of Theorem 4.2
with γ = 2 due to rotational invariance. The resulting estimates are collected in Table 2.

small frequencies large frequencies

genuine hyperbolic mode (1 + t)−1 (1 + t)−1

parabolic modes (1 + t)−3/2 e−Ct

hyperbolic directions (1 + t)−1 (1 + t)−1

uniplanar degeneracies (1 + t)−1 (1 + t)−1

Table 2. Contributions to the dispersive decay rate for hexagonal media.

Corollary 4.7 (Hexagonal decay rates). Cubic media in three space dimensions satisfy the
dispersive type estimate

‖
√
A(D)U(t, ·), Ut(t, ·), θ(t, ·)‖Lq(Rn) . (1 + t)

−( 1
p
− 1
q

)‖
√
A(D)U1, U2, θ0‖p,r (4.20)

for all data U1 ∈ W p,r+1(R3;C3), U2 ∈ W p,r(R3;C3) and θ ∈ W p,r(R3), provided p ∈ (1, 2],
pq = p+ q and r > 3(1/p− 1/q).

Acknowledgements. The paper was inspired by many discussions with Michael Reissig
and also Ya-Guang Wang, who in particular raised the interest for dispersive decay rates for
thermo-elastic systems and the applied decoupling techniques to deduce them. The author is
also grateful to Otto Liess for pointing out some of his results on decay estimates for Fourier
transforms of measure carried by singular surfaces.

References

[1] J. Borkenstein. Lp–Lq Abschätzungen der linearen Thermoelastizitätsgleichungen für kubische Medien im
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