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Abstract

In this paper we consider first an estimator of the residual variance treated by Evans (and Jones)
(2005, 2008) and by Liitidinen et al. (2008, 2010), based on first and second nearest neighbors
given an independent and identically distributed sample. Its strong consistency and strong Cesaro
consistency are shown under mere boundedness and square integrability, respectively, of the de-
pendent variable Y. Moreover, in view of the local variance, a correspondingly modified estimator
of local averaging (partitioning) type is proposed, and strong L;-consistency (for bounded Y') and
rate of convergence (for bounded X and Y under Lipschitz continuity of the regression and the
local variance function) are established.

Key words: regression function, residual variance, local variance, partitioning estimation, nearest
neighbors, strong consistency, rate of convergence.

AMS Subject classification: 62G05, 62G20.



1 Introduction

Let Y be a square integrable real valued random variable and let X be a d-dimensional random
vector, taking values in the space R?. The task of regression analysis is to estimate Y given X,
i.e., to find a measurable function f : R? — R, such that f(X) is a "good approximation” of Y,
that is, |f(X) — Y| has to be "small”. The ”closeness” of f(X) to Y is typically measured by the
so-called mean squared error of f,

E{(y - f(X))*}.
It is well known that the regression function m minimizes this error (where m := E{Y|X = z}),

V= min B{(Y - £(X))*} = B{(Y = m(xX))*). (1)

V, the so-called residual variance, is a measure of how close we can get to Y using any measurable
function f. It indicates how difficult a regression problem is. Since the distribution of m, and
therefore m, are unknown, one is interested in estimating V' by use of data observations

D, :{(Xl,yl)w"7(XnaYn)}; (2)

which are independent copies of (X,Y).
A related interesting problem is the estimation of the local variance (or conditional variance),
defined as
o?(x) = B{(Y —m(X))*|X =2} = E{Y?X =2} — m*(z). (3)
It holds
V= E{s*(X)}. (4)

V, introduced by Evans (and Jones) [5l 6], which is based on first and second nearest neighbors.
They obtained mean square convergence under bounded conditional fourth moment of ¥ and
convergence order O(n~2/?) for d > 2 under finite suitable moments of X and under Lipschitz
continuity of m. It simplifies an estimator given in Devroye et al. [3], based on first nearest
neighbors. References for the estimation of the local variance function, incl. the case of fixed
design, are Miiller and Stadtmiiller [I5] [16], Stadtmiiller and Tsybakov [23], Ruppert et al. [21],
Hérdle and Tsybakov [9], Spokoiny [22], Pan and Wang [20], Hall et al. [8], Miiller et al. [I7],
Neumann [19], Munk et al. [18], Kohler [I0], Brown and Levine [I], and Cai et al. [2].

In this paper, first we show strong consistency of the (global) residual variance estimation sequence
of Evans (and Jones) [5l [6] and Liitidinen et al. [12] [13], under boundedness of Y and show strong
consistency of the sequence of arithmetic means in the general case F{Y?} < oo (Section 2).

In Section 3 for the estimation of the local variance function o2 on the basis of data (2]), we propose
an estimation sequence (02) of local averaging, namely partitioning, type. It is a modification of
the (global) residual vairance estimator and uses again first and second nearest neighbors. We
show strong Li-consistency, that is, [ |o02(z) — o?|u(dz) — 0 a.s., under mere boundedness of ¥
(1 denoting the distribution of X).

Finally, in Section 4 we establish its rate, imposing Lipschitz conditions on o2 and on m together
with boundedness of X and Y.

2 Residual Variance Estimation

In the literature different paradigms how to construct nonparametric estimates are treated. Be-
side the least squares approach, local averaging paradigms are used, especially kernel estimates,
partitioning estimates and k-th nearest neighbor estimates. A reference is Gyorfi et al. [7].

For given i € {1,...,n}, the first nearest neighbor of X; among X1,..., X, 1,

Xiy1,. .., Xy is defined as Xy 1) with

Nli, 1] := Ny[i,1] ;== arg min p(X;, X;), (5)
1<j<n, j#i



here p is a metric (typically the Euclidean one) in R?. The k-th nearest neighbor of X; among
X1, Xic1, Xiga, -0, Xy is defined as Xy k) via generalization of definition (j)):

N[i, k] := Np[i, k] := arg min p(Xi, X;), (6)
1<j<n, j#i, j¢{N[i,1],...,N[i,k—1]}

by removing the preceeding neighbors. If ties occur, a possibility to break them is given by taking
the minimal index or by adding independent components Z;, uniformly distributed on [0, 1], to
the observation vectors X; (see [7], pp. 86, 87). The latter possibility to break ties allow us to
assume throughout the paper that ties occur with probability zero.

Hence, we get a reorder of the data according to increasing values of the distance of the variable
X; (je{1,...,n}\ {i}) from the variable X; (i =1,...,n). Correspondingly to that, we get also
a new order for the variables Y; :

(XNpaps YNpay) s - (XNgiks Ynuw) s - (XNpn-1) YN[in—1]) -

In the following N[i, 1] and N[i, 2] will be used.

analyzed (and generalized) the estimator

n

1

V= 130 (= V) (9= Vi), "
=1

in view of square mean consistency and rate of convergence.
We shall establish strong consistency.

Theorem 2.1 If |Y| < L for some L € Ry, then
Vo=V o as. (n— o0).

The proof is based on the McDiarmid inequality (see, e.g., [7], Theorem A.2) and properties of
nearest neighbors (see [7], Lemma 6.1 and Corollary 6.1 together with Lemma 6.3). To make the
paper more self-contained, we state them in the following lemmas.

Lemma 2.2 (McDiarmid inequality) Let Z, ..., Z, be independent random variables taking val-
ues in a set A and assume that f : A™ — R satisfies

sup If (21, s 2n) = f(21ye ey Zic1, 20y Zig 1y ey 20)| <y 1< <.
Z1,--0y2n, Z,EA

Then, for all € > 0,

262

P{f(ZlvaZTL) _Ef(Z177ZTL) > 6} < 6_Z;L=16g7

and
262

P{Ef(Z,,....,Z,)— f(Z1,...,Z,) > €} < e Tzl

Lemma 2.3 If k,/n — 0, then
||XN[1,kn] - Xi|| =0 a.s.

Lemma 2.4 Under the assumption that ties occur with probability zero,

a)

n
E 1{X is among the k nearest neighbors of X; in {X1,...,X;—1,X,Xiy1,....Xn}}
i=1

<kvs as. (k<n),



b) for any integrable function f and any k <n — 1,

k
Y B Xvp )} < kaBE{IF (X))

j=1
Here v4 < 0o depends only on d.

Proof of Theorem In the first step we show
EvV, -V (8)
(asymptotic unbiasedness), using only square integrability of Y, compare [13], proof of Theorem
2.2.
With the notations
bij = m(X;) —m(X;) (9)
r; =Y, — m(Xy),
we can write, according to [12] and [13]:
E{Y; - Yyuy) (Yi—Ynpz ) =
E {bi,N[i,l] (Ti - TN[i,z])} +FE {bi,N[i,2] (Ti - TN[i,u)}
+E {(ri —rnu) (ri — ) b+ B {bivigbionge ) -
As shown in [I2] and [I3] via conditioning with respect to X1, ..., X,,
E {bi,N[i,l] (Ti - 7’N[i,2])} =FE {bi,N[i,Q] (Ti - T’N[i,l])} =0,
and
E {(Ti - TN[m]) (Ti - TN[i,z])} = E{T?} = E{(Yi - m(Xi))2} =V
Further
| E {b; njibinvgi2 ] < B {(m(Xs) — m(Xnpap)lm(Xs) — m(Xnp.2)} -
Thus, because the X;’s are identically distributed,
[EV, = V| < E{|(m(X1) = m(Xnp)llm(X1) — m(Xnp )l

< B {m(X0) ~ m(Xnp )} + 3B {Im(X) — m(Xnua)}

Because the set of continuous functions on R? with compact support is dense in Ly (p1) (see, e.g., [,
Chapter 4, Section 8.19, or [7], Theorem A.1), for an arbitrary € > 0 one can choose a continuous
function m with compact support such that E{|m(X;) — m(X1)*} <e. Then

E{|m(X1) —m(Xnp)l}
< BE{|(m —m)(X1)|*} + 3E{|(m — m)(Xnp )]}
F3E{|(m(X1) — m(Xnpa))*)-
By Lemma (with &k, = 1) and continuity of m, one has
m(Xnp,1) = m(X1) as.,
thus, by boundedness of m,
E{|ln(X1) = m(Xnpa)?} = 0.
Further, by Lemma [2.4p,
E{|(m —m)(Xnp)*}
< vaE{l(m —m)(X1)[} < vae.

Therefore
limsup E{|m(X;) — m(XN[Ll])|2} < 3(1+va)e,

n—oo



thus
E{[m(X1) — m(Xnp1)[?} — 0.

Analogously one obtains E{|m(X1) — m(Xn12)|*} — 0. Thus
E{[m(X1) = m(Xypap)lm(X1) = m(Xnp )} =0, (10)

and is obtained.
In the second step we show
V,-FEV, -0 a.s. (11)

Set N
Z (Y — Ynpia) (Yi — Yvi2)-

Now in view of an application of Lemma [2.2] n let (X1,Y1),..., (X0, Ya),

(X1,Y)),...,(X],Y,)) be independent and identically distributed (d+ 1)-dimensional random vec-
tors. For ﬁxed j €{1,...,n} replace (X;,Y;) by (X},Y]), which leads to T;, ;. Noticing |Y;| < L,
we have

Ty — T | <8L? 4+ 8L -2 2y = 8(1 + 4yq) L7, (12)

where the first term of the right-hand side results from summand ¢ = j and the second term results
from summands ¢ € {1,...,n}\{j}, because replacement of X; by X/ has an influence on the first
and second nearest neighbors of some, but at most 2+, (by Lemma a), of the random vectors
Xi,..., X1, Xj41,..., X By Lemma[2.2] for each e > 0 we obtain
P{|Vn - Ean > 6}
= P{T,-ET,| > en}

< 26—252n2/n(8(1+4'yd)L2)2,

thus by the Borel-Cantelli lemma.
and yield the assertion.
|

The following theorem states that the boundedness assumption in Theorem on Y can be
omitted if for estimation of V' the sequence ((V1 +...,V,)/n) of arithmetic means insted of (V},)
is used.

Theorem 2.5 In the general case E{Y?} < o,

Vit....V,
1—1—7’—>V a.s.

(strong Cesaro consistency of (Vy)).

It remains an open problem whether V,, — V a.s. if E{Y?} < c0.
For the proof of Theorem we shall use an Efron-Stein inequality (Lemma compare [7],
Theorem A.3).

Lemma 2.6 Let Zy,...,7Z,, Zlv R Zn be independent m-dimensional random vectors where the
two random vectors Zy, and Zj have the same distribution (k = 1,...,n). For measurable f :
R™"™ — R assume that f(Z1,...,2Zy,) is square integrable. Then

Var{f(Z,...,Z,)}
%ZE{\f(Zl,...,Zk,...,Zn)—f(Zl,---aka--aZn”Q}-
k=1

IN



Proof of Theorem [2.5] For a real random variable U we set
Uld .= Ulfjui<ey + cliusey — liy<—ey, ¢>0.

First we show
n

1 1
ﬁ; (Yz' - YN[i,l]) (Yi - YN[i,2]) - E;‘/n,i —0 a.s.,

Vs e (Yiw _ylva ) (Ywm _ylva ) .

where

N[i,1] i NI[i,2]
Because E{Y}? < o0, a.5. Y; = Yi[ﬂ] for i sufficiently large, say, ¢ > M (random). For i €
{M,M+1,...,n}, as. Y; = Yi[‘/a. By Lemma, for p € {1,..., M} one has N[i, 1] = p for
at most 4 indices € {1,...,n} and N[i, 2] = p for at most 274 indices i € {1,...,n}. Thus a.s.

(Ve = Yiviin) (Vi = Yiviio) # (Yi[m - Y%ﬂu) (YZNM - Yzb@z])

for at most (1 + 3v4)M indices € {1,...,n}, which yields the assertion.

Therefore it suffices to show l
I (1
=1

i=1
In the second step we show
1 n
-S> EV,; V. (14)
=1

n-

With m( (z) := E{YIV"|X = 2} we have
1 n
- Z EVn,i = EVn,l
[

= E{V-m(x))?}

+ F { (m(") (X1) —m™ (XN[Ll])) (m(")(Xl) - m(n)(XN[Lz]))} )

the latter according to Liitidinen et al. [12][13]. By E{Y?} < co and the dominated convergence
theorem, [ |m(™(z) —m(z)|?u(dz) — 0 and thus E{(YIV"] — m(X))2} — V. Further m and
also m(™ can be approximated by a continuous function m with compact support such that for

each € > 0 an index ng(e) exists with F{|m(X) — m(X)|?} < e and also
E{m™ (X)) — m(X)|*} < e for n > ng(e).

Then we obtain

2
E {‘m(n)(X1> - m(n)(XN[Ll])’ }

< B3E{|(m™ —m)(X1)} +
BE{|(m™ — ) (Xnpn)*} + 3E{|m(X1) — m(Xnp )}
< 3e+ 3vq4e +0(1),
the latter as in the proof of Theorem [2.1] Therefore

2
B { | 0t) = m® )| 0

and correspondingly
2
FE { ’m(”) (Xl) — m(n) (XN[I,Q])‘ } — 0,

thus
B { (00 - t0) (10 ) 0



and is obtained as well as

1SN [(1¢
- ; (z 2EV1> = V. (15)

In the second step we show

n !
1 1
; (l z:l Vii— EVM)) — 0 a.s. (16)
It suffices to show v
ar .y
Z {z:?)z 1V } 0, (17)
n
for this implies
2
11
Z . (Z(Vn,i - EVn,i)) < 00 a.s.
n\ne
and, by the Cauchy-Schwarz inequality and the Kronecker lemma,
1¢ ?
DI NTITE)
l 1 i=1
1¢ ’
Z 72 (Vi—EVig)| =0 as.
=1 =1

We shall show
n 4
Var {ZV’“} <kl { (Y[‘/a) } ,neEN (18)
i=1

for a suitable finite constant c. This, together with E{Y?} < oo, implies (17)), because, as is well
known (see, e.g., [14], Section 17.3), E2|U| < oo for a real variable U implies > F {(U["])z} /n? <
0.

We prove . by using the Efron-Stein inequality (Lemma [2. .

Let n > 2 be fixed. Replacement of (X;,Y;) by (X},Y/) for fixed j € {1,...,n} (where
(X1,Y1),... (X, Yn), (X1,Y]),...,(X],Y,) are independent and identically dlstnbuted) leads from
Tp =37 Vai, N[j,1] and N[j, } to T, j, N'[4,1] and N'[j, 2], respectively.

We obtain

‘Tn - Tn,j| S An,j + Bn,j + Cn,j + Dn,j + En,j + Fn,j
where with Z; = Y}V, 7 = Y[V, 7z = y V7

An,j = > \Z; — Z1||Z; — Zq[Lnii =0 (v 5 21=a)»
L g€{1,n}\ {5}
I#q

B = > \Z} — Z1]|Z; — Zg| 1w )=y 1wl 2)=a)»
L ge{l, )\ s}
#q
Chj = S 1Zi= Z|Zi — Zy V=3 NG 21=a)
i, q€{1,....n}\{j}
i#£q
Dnj= >, %= Zj|Zi = Zg|\nriin=y Linvtizi=ay
i, qe{l,...,n}\{j}
i#q
Enj= Y, 12— 2ZllZ - Zj\ iy Lia—s),

i, 1e{1,...,n}\{j}
£l



Fnj= > |Zi = Zil| Zi — Z51 1w gi, =0y Lo 21=53 -
i le{l,;in}\{j}

Thus
Ty — T jl? <6(A2, +B. ;+Ch,+ D}, + E.,+F ).

By the Cauchy-Schwarz inequality applied to the sums defining A, ;,...,
F, ; and by the inequality |a — b|*|a — ¢|* < 8(a* 4 b* 4 ¢*) we obtain

EY T, -T,;’<6-6-8E > (Z!+ 2 + Z)\{nyja=y Lnp.2=a)-
j=1

Js 1, q€{1,...,n}
J#L 1#q, q#j

As to the term concerning ZJ‘-1 we sum with respect to [ and ¢ and for the corresponding expected
final sum we obtain the bound nk {Z4} . As to the term Z;! we sum with respect to ¢, then with
respect to j using Lemma [2:4h, and for the corresponding expected final sum we obtain the bound
yanF {24} . As to the term Z;l we sum with respect [, then with respect to j using Lemma

and for the corresponding expected final sum we obtain the bound 2ysnF {Z 4} .
Therefore, by Lemma [2.6]

VG/I‘(Tn) < % -6-6-8- (1 + 3'yd)nE { (Y[m>4} ,

i.e., (18)). Thus is obtained, which together with implies . [ ]

3 Local Variance Estimation: Strong Consistency

V, in (7) as an estimator of V = E{(Y — m(X))?} was treated in Section 2. In this section our
aim is to give an estimator of the local variance function o2 in . Recall the relation between
the residual and the local variance function in .
Our proposal for an appropriate estimator of o2 is

i (Vi = Yy ) (Yi = Yz la, @) (Xi)
Soila, @) (Xs)

where P, = {Ap1,An 2, ...} is a partition of R¢ consisting of Borel sets An; C R?, and where the
notation A, (x) is used for the A, ; containing x. In this sense we localize the global expression
in V,, by local averaging, in particular by partitioning. Analogously a kernel type estimator could
be treated. The next theorem deals with strong consistency of the local variance estimator.

o2(x) = , € RY (19)

Theorem 3.1 Let (Py)nen with Py, = {An1,Ana,...} be a sequence of partitions of R such
that for each sphere S centered at the origin

lim max diam A,; =0 (20)
n—0o0 j:A, ;NS#D

and, for some p = p(S) € (0, %)
H{j: AN S £ 0} ~nP. (21)

Finally, let |Y| < L for some L € Ry. Then

/|Ufl(x) —o*(z)|p(dz) = 0 a.s.



Set now .
Y oic1 (Y = Ynp ) (Yi = Yapio)la, (o) (Xa)

np(An(z))

For the proof of Theorem [3.1] we need Lemma which is based on Lemmal[3.2]and the McDiarmid
inequality (Lemma n Lemma itself is based on the Efron-Stein inequality in Lemma

o2 (z) == (22)

Lemma 3.2 Under (@) and , for each sphere S centered at O

{/|a _o? |de>}%o.
B{ [ 10 - a2 (@)n(ao) }

/S|02< - B2 (a)lu(dn) + B{ [ |Bo¥ ) - o2 (a)ln(ae) |

Proof One has

IN

<
E{(v; - YN[1,1])(Y1 — Ynp )| X1 = Z}
= 0°(2) + E{(m(X1) — m(Xnp1,1))(m(X1) — m(Xnp2)| X1 = 2},

thus
Eo}(x)
_ 02(2)1a,(2)(2) »
= [
E{(m(X1) = m(Xnp,1)(m(X1) — m(Xnp,2)) X1 = 2}, @) (2)
v/ WA ) Ha2)
Notice
/ [/ E{jm(X1) - m(XN[l,l])||m§f((jl)n(_x;r;(XN[l,2])|’Xl = Z}lA,,(z)(Z)M(dZ)] (da)
_ / l / E{|m(X1) - m(XN[l,mnmL)&)n (—x;r)mxml,gpuxl = Ham) d@] (@)
< E{im(X1) — m(Xyp | lm(X1) — m(Xnp o)}

—0
by . Moreover,

[l [ Wuwz) u(dz) 0

For, because of [ o?(z)u (dx) < 00, as in the proof of Theorem [2.1] . 1| for each € > 0 one can choose
a continuous function &2 with compact support such that

/ j02(2) — 32(2)|u(de) < ¢

02(2)1a,(2)(2) 2(2)1a, @)(2)
/ ‘/ ey ) — [ T R )|

further



and one then notices

7w) — [ TEEAOE) ) an) 0

/s #(An(z))

because of uniform continuity of o and . Therefore K,, — 0.
Now M,, will be treated. Set J,, :=={j : A, ;NS # 0} and 1, := #J,.

M, = Y B i (Vi = Vv (Vi — Yiviig)a,,, (X5)
: A

= y np(An,;)
n Y; —Y, i Y; -Y; i 1 j XZ
_p = (Y = Y)Y = Viviio) Lan,; (X0 u(dff)}
nN(An,j)
< = Z E{ Z (Yi = Ynaa)(Yi = Yvig)la, ; (Xi)
Jejn =1
—EZ(Yi = Ynpa) (Vi = Ynua)la, ; (X0) }
=1
1 n
< L2 J Var {Zm — Vo)) (¥ — Yoz L, (Xi)}
]eJn i=1
<

I, In

2 Z(8L2 12.2.92v,)2

. \/ 5 (817 +8 Ya)

(by Lemma [2.6| and the derivation of ((12))

ln
< 4201 +4vd)L27 — 0 (by (TI)).

Thus the assertion is obtained. [ |

Lemma 3.3 Assume (@) and . Let S be an arbitrary sphere centered at 0. Then a constant
¢ > 0 exists such that for each ¢ >0

{/ 0% (@) = o3 (2) | u(dw) > 26} < oen'

Proof We follow the argument in the proof of Lemma 23.2 in [7]. One has

|0 (2) — o7 (2)]
= Elo*(@) — o7 (@)| + (|0*(2) — 07" (2)| = Elo*(2) — 03" (x)])-
But fsE|a x) — o2*(x)|u(dz) — 0 due to Lemma

Now, in view of an application of Mcharmld’s inequality (Lemma [2.2] replacmg (X:,Y;) by
(XZ’7Y;’) as in the proof of Theorem [2.1| leads from o¢2*(z) to o2*:(x), (] € {1,...,n}), where,

n,j
correspondingly to ,

for n sufficiently large.

8(1 4 4y,) L?
np(An(z))

[ lo*@) =z @lntd) — [ 1) = o2 ) (e

/S(W( 2) — 0% (@) — |0 () — 02, (2)]) ()

o (x) — oy ()| <

Thus

10



< [Iote) - @lntdz) G =1
(due to the triangle inequality |a — b| > ||a| — |b]|)
8(1 + 4vyq)L? / 1
< w(dz
TR ATERE) I
2
o Sevar?

n
where 1, ;= #{j: A, ; NS #0}.
Now, using Lemma [2.2] for arbitrary € > 0

P{[ ([~ o2 @lutt) - B [ 10%) - o (0)utao) ) > e}

_ eQ/n[8(1+4:2d)L 12 ln

2 1-2p
—€ Ccn
&

IN A

with some ¢ > 0. Therefore, because of [¢ F|o?(x) — 02*(2)|u(dx) < e for n large enough,

{/ |0 () — o7 ()| u(dz) > 26} < oen'

for n sufficiently large. n

Proof of Theorem Because Y is bounded, for an arbitrary € > 0 one can choose a sphere
S centered at 0, such that

/ 02 (2) — o ()| u(dr) < ¢
SC

Therefore it sufficies to show [¢[02*(x) — 02 (x)|u(dz) — 0 a.s. for each sphere S centered at 0.
One obtains

/ 102 (2) — 0 (2) u(de)

[ lo@) = o @nta) + [ 102 (@) = o*(a) ()
< G,+D,.

But D,, — 0 due to Lemma and the Borel-Cantelli lemma.
Now, concerning G,,, similarly to the argument in [7], p. 465,

12 @) - o2 @lntda)

IN

< / ‘Z?—l(Yi = Y)Y — Y21, @) (Xi)
- np(A, ()
o Y=Yy (Yi — Yo la, @) (X;
il N[;}])( 1)V([4,2]) A () (Xi) (de)
Ei:llAn(r)( ’L)
- 1 1
< 4L2/ La, ()(X - == w(dz
2 X0 | ) T S T | 1)
" 14, (2)(Xi)
< 417 —n - dr) =0 a.s.
ZW(A @) M)

(due to (20) and (21)).

11



4 Rate of Convergence

In this section we establish a rate of convergence for the estimate of the local variance defined in
(19). The rate corresponds to the rate obtained in classical regression estimation ([7], Theorems
4.3 and 3.2).

Theorem 4.1 Let P,, be a cubic partition of R? with side length h.,, of the cubes (n € N). Assume
that X and Y are bounded. Moreover, assume the Lipschitz conditions

0%(@) — () < Clla—tl, @t € RY, (23)
and

m(z) = m(t)| < D]z —t|, x,teR’ (24)
(C, D eRy, || || denoting the Euclidean norm,).
Then, with

hnwn d+2

for the estimate (@ one gets

B [102) -~ o(@)lutaz) = 0 (n775) .
For the proof of Theorem the following lemma will be used.
Lemma 4.2 Assume that X is bounded. Then for some finite constant c,
E{|Xypu - X1} < e~/ max{d.2}

E{|Xnp2 — Xa|?} S en 2/ maxld2h - (n e N).

This lemma in its first part is stated for d > 3 in Gyorfi et al. [7], Lemma 6.4, and implies the
second part according to [7], p. 95. For d = 2 (and then obviously also for d = 1) it immediately
follows from Liitidinen et al. [12], 3.2 (with reference to [1I]) and [I3], Theorem 3.2.

For our purpose the weaker bound ¢n~1/(4+2) would suffice.

Proof of Theorem Choose L € [0,00) such that |Y;| < L and denote by [,, the number of
cubes of the partition P, that cover the bounded support of y. It holds I, = O(h; ). ¢y, ca,...
will be suitable constants. Set

Wi = (Yi = Y)Y = Ygi,2))-
First, according to [7], p. 465, we note
’Z?_lwn,ilAn(m)(Xi) Yo i Whila, (@)(X3)

Yimla,m (X)) (A (@)
« o
further
E/‘Z —1la, <x> )(;;;”(A”(x))‘u(dx)
Var(3 il 1M(X))
< / v 1(;))” (da)
T i
Vi) (A, (2))
1 1
< mW o))
< V n/n
< ¢cin 2h7% (26)

12



In the second step we show

Zz 1E{Wn11A (z)( )}

p(An(2))
/

i.e.

E{W,11a, ) (X1)}

— 0%(@)| j(dw) < 5 (R + 2 metd2})

E{Wn,l lAn(z)(Xl)}
= E{(Yl — m(Xl))zlA”(x)(Xl)}

+E {(m(X1) = m(Xnp1) (m(X1) = m(Xnp,2)) 1a, @) (X1)}-

Then

IN
H
W
A
§\/
@'—‘
E
=
=
—~
QU
=y
S~—

IN

/fllt—wlllA (@) )

IE
(by (23))

f 1An z) d )
CVdh, / Wu(dw) < OVdh,,.

IN

Further

/ ‘E {(m(X1) = m(Xnpap) (m(X0) = m(Xnpa) 1a, @ (X)) ‘ .

1 B {|m(x) = m(Xnpn)|” La,w () }
3/ HC () )
/E |m(Xy) — XN[12])| 1A,L(I)(X1)}
2

IN

p(dx)

(An(z))
E{HXNll]_Xl” P+ E{| XN — Xal*}]

IN

+
1
2P
(by and / [lAn(w) (t)/u(An(x))] p(dz) < 1 for each t € RY)

< CBn—Q/ max{d,2}

by Lemma Thus and are obtained.

In the third step we show
/E i=1 [Wn zlA (m)( ) E{Wn zlA (z)(X )}]

np(An(x))
The left-hand side is bounded by

/ \/Var{Z?len,ilAn(x) (Xi)}

p(dz).

13

p(dr) < ez (hn +n~ max{dﬂ}) ,

p(dz) < C4n_%h;%.

(dz)

(27)

(28)

(29)



As in the proof of Theorem [2.5[ we apply the Efron-Stein inequality (Lemma and obtain,

compare ,

Var {ZWn,ilAn(x)(Xi)} < c5nL4E{1An(£) (X)} = CGRIU,(A”(%)).

i=1
Further

A — »
IRre) “(dm)g\// W) ) < er/hn < eshy

Thus is obtained.
In the last step we gather (25), (26), (27), and obtain

B{ [ loka) - o*@)utao)}

< ¢ (n—%h;% + hy + n—2/ max{d,Z})
< 010717#2
by the choice of (h,). Thus the assertion is obtained. |

References

[1] L.D. Brown and M. Levine, Variance estimation in nonparametric regression via the difference
sequence method, Annals of Statistics 35 (2007), 2219-2232.

[2] T. Cai, M. Levine, and L. Wang, Variance function estimation in multivariate nonparametric
regression, Journal of Multivariate Analysis 100 (2009), 126-136.

[3] L. Devroye, D. Schéfer, L. Gyorfi, and H. Walk, The estimation problem of minimum mean
squared error, Statistics & Decisions 21 (2003), 15-28.

[4] N. Dunford and J.T. Schwartz, Linear operators, general theory, Wiley Classics Library, New
York, 1958.

[5] D. Evans, Estimating the variance of multiplicative noise, 18th International Conference on
Noise and Fluctuations, ICNF, in ATP Conference Proceedings 780 (2005), 99-102.

[6] D. Evans and A.J. Jones, Non-parametric estimation of residual moments and covariance,
Proceedings of the Royal Society A 464 (2008), 2831-2846.

[7] L. Gyorfi, M. Kohler, A. Krzyzak, and H. Walk, A distribution-free theory of nonparametric
regression, Springer, New York, 2002.

[8] P. Hall, JW. Kay, and D.M. Titterington, Asymptotically optimal difference-based estimation
of variance in nonparametric regression, Biometrika 77 (1990), 521-528.

[9] W. Héardle and A. Tsybakov, Local polynomial estimators of the volatility function in non-
parametric autoregression, Journal of Econometrics 81 (1997), 223—-242.

[10] M. Kohler, Nonparametric regression with additional measurement errors in the dependent
variable, Journal of statistical planning and inference 136 (2006), 3339-3361.

[11] E. Liitidinen, F. Corona, and A. Lendasse, Non-parametric residual variance estimation in
supervised learning, IWANN’07 Proceedings of the 9th International Work-Conference on
Artificial Neural Networks. Lecture Notes in Computer Science: Computational and Ambient
Intelligence 4507 (2007), 63-71.

14



, On nonparametric residual variance estimation, Neural Processing Letters 28 (2008),
155-167.

, Residual variance estimation using a nearest neighbor statistic, Journal of Multivari-
ate Analysis 101 (2010), 811-823.

M. Loeve, Probability theory, 4th ed. Springer, Berlin, 1977.

H-G. Miiller and U. Stadtmiiller, Estimation of heteroscedasticity in regression analysis, An-
nals of Statistics 15 (1987), 610-625.

, On variance function estimation with quadratic forms, Journal of Statistical Planning
and Inference 35 (1993), 213-231.

U. Miller, A. Schick, and W. Wefelmeyer, Estimating the error variance in nonparametric
regression by a covariate-matched u-statistic, Statistics 37 (2003), 179-188.

A. Munk, N. Bissantz, T. Wagner, and G. Freitag, On difference based variance estimation

in nonparametric regression when the covariate is high dimensional, Journal of the Royal
Statistical Society: Series B 67 (2005), 19-41.

M.H. Neumann, Fully data-driven nonparametric variance estimators, Statistics 25 (1994),

189-212.

Z. Pan and X. Wang, A wavelet-based nonparametric estimator of the variance function,
Computational Economics 15 (2000), 79-87.

D. Ruppert, M.P. Wand, U. Holst, and O. Héssjer, Local polynomial variance-function esti-
mation, Technometrics 39 (1997), 262-273.

V. Spokoiny, Variance estimation for high-dimensional regression models, Journal of Multi-
variate Analysis 82 (2002), 111-133.

U. Stadtmiiller and A.B. Tsybakov, Nonparametric recursive variance estimation, Statistics
27 (1995), 55-63.

15



Paola Gloria Ferrario

Pfaffenwaldring 57

70569 Stuttgart

Germany

E-Mail: | paola.ferrario@mathematik.uni-stuttgart.de

Harro Walk

Pfaffenwaldring 57

70569 Stuttgart

Germany

E-Mail: | harro.walk@mathematik.uni-stuttgart.de

16


mailto:paola.ferrario@mathematik.uni-stuttgart.de
mailto:harro.walk@mathematik.uni-stuttgart.de




Erschienene Preprints ab Nummer 2007/001
Komplette Liste: http://www.mathematik.uni-stuttgart.de/preprints

2011/022

2011/021
2011/020

2011/019

2011/018

2011/017
2011/016
2011/015

2011/014

2011/013
2011/012

2011/011
2011/010

2011/009

2011/008
2011/007

2011/006

2011/005
2011/004

2011/003

2011/002
2011/001
2010/018
2010/017

2010/016
2010/015
2010/014
2010/013

Ferrario, PG.; Walk, H.: Nonparametric partitioning estimation of residual and local
variance based on first and second nearest neighbors

Eberts, M.; Steinwart, I.:  Optimal regression rates for SVMs using Gaussian kernels

Frank, R.L.; Geisinger, L.: Refined Semiclassical Asymptotics for Fractional Powers
of the Laplace Operator

Frank, R.L.; Geisinger, L.: Two-term spectral asymptotics for the Dirichlet Laplacian
on a bounded domain

Hénel, A.; Schulz, C.; Wirth, J.:  Embedded eigenvalues for the elastic strip with
cracks

Wirth, J.:  Thermo-elasticity for anisotropic media in higher dimensions

Hdllig, K.; Hérner, J.:  Programming Multigrid Methods with B-Splines

Ferrario, P: Nonparametric Local Averaging Estimation of the Local Variance Func-
tion

Miiller, S.; Dippon, J.:  k-NN Kernel Estimate for Nonparametric Functional Regres-
sion in Time Series Analysis

Knarr, N.; Stroppel, M.: Unitals over composition algebras

Knarr, N.; Stroppel, M.: Baer involutions and polarities in Moufang planes of charac-
teristic two

Knarr, N.; Stroppel, M.: Polarities and planar collineations of Moufang planes

Jentsch, T.; Moroianu, A.; Semmelmann, U.:  Extrinsic hyperspheres in manifolds
with special holonomy

Wirth, J.:  Asymptotic Behaviour of Solutions to Hyperbolic Partial Differential Equa-
tions

Stroppel, M.:  Orthogonal polar spaces and unitals

Nagl, M.: Charakterisierung der Symmetrischen Gruppen durch ihre komplexe Grup-
penalgebra

Solanes, G.; Teufel, E.: Horo-tightness and total (absolute) curvatures in hyperbolic
spaces

Ginoux, N.; Semmelmann, U.:  Imaginary Kahlerian Killing spinors |

Scherer, C.W.; Kése, |.LE.:  Control Synthesis using Dynamic D-Scales: Part Il —
Gain-Scheduled Control

Scherer, C.W.; Kése, I.E.:  Control Synthesis using Dynamic D-Scales: Part | —
Robust Control

Alexandrov, B.; Semmelmann, U.: Deformations of nearly parallel G,-structures
Geisinger, L.; Weidl, T.: Sharp spectral estimates in domains of infinite volume
Kimmerle, W.; Konovalov, A.: On integral-like units of modular group rings

Gauduchon, P; Moroianu, A.; Semmelmann, U.: Almost complex structures on
quaternion-Kahler manifolds and inner symmetric spaces

Moroianu, A.; Semmelmann,U.: Clifford structures on Riemannian manifolds
Grafarend, E.W.; Kihnel, W.: A minimal atlas for the rotation group SO(3)
Weidl, T.: Semiclassical Spectral Bounds and Beyond

Stroppel, M.:  Early explicit examples of non-desarguesian plane geometries



2010/012
2010/011

2010/010

2010/009

2010/008
2010/007

2010/006

2010/005

2010/004
2010/003

2010/002

2010/001

2009/008
2009/007

2009/006

2009/005
2009/004
2009/003
2009/002
2009/001
2008/006

2008/005

2008/004

2008/003
2008/002

2008/001

2007/006

Effenberger, F.: Stacked polytopes and tight triangulations of manifolds

Gyérfi, L.; Walk, H.:  Empirical portfolio selection strategies with proportional trans-
action costs

Kohler, M.; Krzyzak, A.; Walk, H.: Estimation of the essential supremum of a regres-
sion function

Geisinger, L.; Laptev, A.; Weidl, T.: Geometrical Versions of improved Berezin-Li-Yau
Inequalities

Poppitz, S.; Stroppel, M.:  Polarities of Schellhammer Planes

Grundhéfer, T.; Krinn, B.; Stroppel, M.:  Non-existence of isomorphisms between
certain unitals

Héllig, K.; Horner, J.; Hoffacker, A.:  Finite Element Analysis with B-Splines: Weighted
and Isogeometric Methods

Kaltenbacher, B.; Walk, H.: On convergence of local averaging regression function
estimates for the regularization of inverse problems

Kihnel, W.; Solanes, G.: Tight surfaces with boundary

Kohler, M; Walk, H.: On optimal exercising of American options in discrete time for
stationary and ergodic data

Gulde, M.; Stroppel, M.: Stabilizers of Subspaces under Similitudes of the Klein
Quadric, and Automorphisms of Heisenberg Algebras

Leitner, F.:  Examples of almost Einstein structures on products and in cohomogene-
ity one

Griesemer, M.; Zenk, H.: On the atomic photoeffect in non-relativistic QED

Griesemer, M.; Moeller, J.S.:  Bounds on the minimal energy of translation invariant
n-polaron systems

Demirel, S.; Harrell Il, E.M.:  On semiclassical and universal inequalities for eigenval-
ues of quantum graphs

Béchle, A, Kimmerle, W.: Torsion subgroups in integral group rings of finite groups
Geisinger, L.; Weidl, T.:  Universal bounds for traces of the Dirichlet Laplace operator
Walk, H.: Strong laws of large numbers and nonparametric estimation

Leitner, F.:  The collapsing sphere product of Poincaré-Einstein spaces

Brehm, U.; Kiihnel, W.: Lattice triangulations of E2 and of the 3-torus

Kohler, M.; Krzyzak, A.; Walk, H.: Upper bounds for Bermudan options on Markovian
data using nonparametric regression and a reduced number of nested Monte Carlo
steps

Kaltenbacher, B.; Schépfer, F.; Schuster, T.: lterative methods for nonlinear ill-posed
problems in Banach spaces: convergence and applications to parameter identification
problems

Leitner, F.:  Conformally closed Poincaré-Einstein metrics with intersecting scale
singularities

Effenberger, F.; Kihnel, W.: Hamiltonian submanifolds of regular polytope

Hertweck, M.; Héfert, C.R.; Kimmerle, W.: Finite groups of units and their composi-
tion factors in the integral group rings of the groups PSL(2, q)

Kovarik, H.; Vugalter, S.; Weidl, T.: Two dimensional Berezin-Li-Yau inequalities with
a correction term

Weidl, T.:  Improved Berezin-Li-Yau inequalities with a remainder term



2007/005

2007/004

2007/003
2007/002
2007/001

Frank, R.L.; Loss, M.; Weidl, T.:  Polya’s conjecture in the presence of a constant
magnetic field

Ekholm, T.; Frank, R.L.; Kovarik, H.: Eigenvalue estimates for Schrédinger operators
on metric trees

Lesky, PH.; Racke, R.: Elastic and electro-magnetic waves in infinite waveguides
Teufel, E.: Spherical transforms and Radon transforms in Moebius geometry

Meister, A.:  Deconvolution from Fourier-oscillating error densities under decay and
smoothness restrictions



	Introduction
	Residual Variance Estimation
	Local Variance Estimation: Strong Consistency
	Rate of Convergence

