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Abstract

Given a stationary and ergodic time series the problem of estimating the conditional expectation
of the dependent variable at time zero given the infinite past is considered. It is shown that the
mean squared error of a combination of suitably defined local averaging or least squares estimates
converges to zero for all distributions whenever the dependent variable is square integrable.

AMS classification: Primary 62G05; secondary 62G20.

Key words and phrases: dependent data, static forecasting, mean squared error, time series, weak
consistency.

1 Introduction

Let ((X,,,Y5)),cz be a stationary and ergodic sequence of R? x R-valued random variables with
E {Y02} < o0o. In this paper we consider the following static forecasting problem: Given the

dataset
D:rlL = {(X—’ru Y—n)a (X—n—i-lv Y—n+1)7 ) (X—l, Y—l)}

and X, construct estimates m,,(Xo, D_}) of

E{Y|X° ., Y 0} =E{Yy|Xo, (X_1,Y 1), (X2, Y0),... }

—00)

which are weakly consistent in the sense that they satisfy

E{|mn(X0,D:,1L)—E{Y0|X900,Y__010}‘2} 50 (n— o0). (1)
In the sequel estimates m,, are constructed which are weakly universally consistent, i.e., which
satisfy (1) for all stationary and ergodic time series with E{Y?} < oo. The main aim is to construct
the estimates in such a way that they are easy to compute and thus applicable in practice.

In the existing literature there are several results concerning consistency in various senses for

nonparametric estimators under more or less strong mixing assumptions on the data [e.g., Collomb
(1985), Marton and Shields (1994)]. The monograph by Gyorfi, Haerdle, Sarda and Vieu (1989)
gives additional information. A big drawback of all these estimates is that mixing conditions
are not verifiable in practice what makes them difficult to apply. Therefore it is desirable to
construct estimates which are consistent in the above sense under considerably weaker conditions
(e.g., stationarity and ergodicity of the data).
Several authors have investigated forecasting problems with stationarity and ergodicity as sole
assumption on the data, usually in the context of autoregression (where there is no X; only Y;).
Cover (1975) formulated two fundamental classes of prediction problems for stationary and ergodic
time series, the static and the dynamic forecasting problem.

In the dynamic forecasting problem, specialized to autoregression, one wants to find an es-
timator E(Y"™1) of the value E {¥,, | Y§"~'} such that for all stationary and ergodic sequences
{Yi},cn it holds

Tim. ’E(Yon_l) ~E{Y, | YO”‘l}’ =0 as.
Bailey (1976) showed that the dynamic forecasting problem cannot be solved in general, a much
simpler proof of this result was given in Ryabko (1988). For related results see also Gyorfi, Morvai
and Yakowitz (1998) and Weiss (2000). In case that the ergodic time series takes values from a
finite alphabet Morvai and Weiss (2005) proposed a very simple estimator which is pointwise and
weakly consistent for all such stationary and ergodic time series.

* Running title: Weakly universally consistent forecasting



In the so-called static forecasting problem, specialized to autoregression, one wants to find an
estimator E(Y 1) of the value E {Yo | Y__Olc} such that for all stationary and ergodic sequences
{Yi};ez it holds

nan;OE(Y:T}) =E{Y,| Y.L} as.
Ornstein (1978) gave such a strongly consistent estimator for the case that the time series values
are finite. The algorithms of Algoet (1992) and the simpler algorithm of Morvai, Yakowitz and
Gyorfi (1996) yield strong consistency for bounded stationary and ergodic sequences. For more
results in view of static and dynamic forecasting and concerning connections and related problems
we refer to Morvai, Yakowitz and Algoet (1997), Gyorfi, Lugosi and Morvai (1999), Gyorfi and
Lugosi (2000), Gyorfi and Ottucsak (2007) and Morvai and Weiss (2011).

However, the estimates above are rather difficult to compute or consume data rapidly so that
it is not clear whether they can be applied to any real or simulated data set. Moreover, it is known
that a simple partitioning estimate which is strongly universally consistent in the case of mixing
assumptions fails to be consistent when the data is only stationary and ergodic (cf., Gyorfi, Morvai
and Yakowitz (1998)). Thus it is reasonable to conjecture that in case of stationary and ergodic
data strongly universally consistent estimates, which are easy to compute, do not exist.

An application of weakly universally consistent estimates in mathematical finance is given in
Kohler and Walk (2010). There the problem of exercising an American option in an optimal way is
considered. An estimate of the optimal stopping time is constructed which achieves for sample size
tending to infinity the optimal expected discounted payoff whenever the returns of the underlying
asset are stationary and ergodic.

In Jones, Kohler and Walk (2011) it was shown that by applying the ideas of Kohler and Walk
(2010) it is possible to construct weakly universally consistent localized least squares estimates.
There techniques from the theory of prediction of individual sequences (cf., e.g., Cesa-Bianchi and
Lugosi (2006)) are used to choose the smoothing parameters of the estimates. The same ideas have
already been applied to sequential prediction problems where estimates are constructed which are
universally consistent with respect to a normalized cumulative prediction error, see Gyorfi and
Lugosi (2002), Gyorfi and Ottucsak (2007) and (in connection with portfolio optimization) Gyorfi
and Schéfer (2003), Gyorfi, Lugosi and Udina (2006) as well as Gyorfi, Udina and Walk (2008).

The estimates in Jones, Kohler and Walk (2011) are easier to compute then the above men-
tioned strongly universally consistent estimates, in particular it is obvious that they can be applied
to real or simulated data sets in practice. Nevertheless, through the fact that they combine ideas
of local averaging and least squares it seems still to be a little bit challenging to apply them in
practice. In this paper we focus on much simpler local averaging and least squares estimates and
construct four estimates which are weakly universally consistent. They are based on simple kernel,
partitioning and nearest neighbor regression estimates as well as least squares estimates. Again
techniques from the theory of prediction of individual sequences are used to choose the smoothing
parameters of the estimates, and a suitable averaging of the estimates is used to be able to ensure
that holds.

The estimates are defined in Section 2, Section 3 contains the main result, and the proofs are
given in Section 4.

2 Definition of the estimates

In this section we introduce four estimates which are weakly universally consistent. They mainly
distinguish in the choice of the so-called expert, which will be a kernel estimate for the first one, a
partitioning estimate for the second one, a nearest neighbor estimate for the third one and a least
squares estimate for the last one.

In order to simplify the notation we will use throughout this paper the abbreviations

Zh=Zy,-, Z1), k<l



for arbitrary random variables Z; (j € Z),
D = {(Xp, Yie), (X1, Vi), -, (X0, YD)}, k<1,

and
d%g:{xkayk)a(xk+17yk+1)7~'w(xlayl)}a kgl

Sz.r denotes the closed sphere in a Euclidean space with center x and radius r.
We start with defining a parameter set

P={(k,r,N):k,r,N € N}
and estimates mfjf(kmm (2% 4,y ;d”)) and mﬁjf(kw) (zo,d"L) (i € {1,2,3,4}) of

mp(2% g, y"p) =E{Yy | X% =2, Y ! =y,

where the parameters of the estimates are determined by r and N, and where k indicates how
far back the estimate will look. For the local averaging estimates, r will be used to determine
how similar observations in the past to the current values have to be in order to be included
in the estimation. For the least squares estimate, r determines the function space over which
minimization takes place. N will be used to truncate the values of Y; at level N.

For the first estimate assume that bandwidths h, > 0 satisfying

h. =0 (r— o00)
and a nonincreasing and continuous function H : Ry — R, satisfying
H0)>0 and t-H(t)—>0 (t— o00)
(e.g., H(v) = e*“2) are given. Using H we define a kernel function K : RE+D-d+k L R, by

K (v) = H (|jo] <50+

where ||[v|| denotes the Euclidean norm of v.
With the convention 2 := 0 we define the kernel estimate rh;l)(k " N) by

0
~ (1) 0 -1, 3—1
My, (k,r,N) (U, v g5d-y,)
_ (G R, SRS B O )
) P TN(yi+1)K( ikl okt .
= S22 K<(zétiJrl‘yf—k+1>7(u()—k‘“:11c)) ifnzk+1,
i=—n+k—1 oy
0 else,

where the truncation operator T is defined as

Tn(x) ==z 1{z<ny +sign(@) N 1{z>ny-

For the second estimate, for every k € N let (Py), o be a sequence of finite or countably
infinite partitions Py, = {Ag 1, Akr2, -} of (]Rd)kJrl x R¥, where Ay, ; C (RY) mH
Borel sets. For z € (]Rd)l€+1 x R* set Apr(z) = Agrjif 2 € Agrj.

x R* are

With the convention % := 0 we define our partitioning estimate mf?(k Ny S
= (2) 0o ,—1l.4-1
T (k8 (U= Vg )



2‘727 4k— 1IN (yi+1)1 it1 i 0 -1
t=on (z; 0 Ui VEAR p(ul v .
{ k+1 k+1 k ( k k)} if n Z k + 17

b1Vl k1) €A, T( 7k='”:11c)}

0 else.

= Z:——nJrk 1 {(m

For the third estimate let p, > 0 be given such that
pr— 0 (r— o00).

Let k,r be fixed and let n be so large that n>k+ |pn] > k41, where |z] is the largest integer
less than or equal to z. For each (u ) ) € R+ d+E 1ntr0duce the random set of | p,n| nearest
neighbor (NN) matches

(k,r)

n7(u0,k7v:)t)

{-n+k-1<i<-2 : (X7 i+1,}fii_k+1)is among the |p,n]

—n

NNs of (u s U k) in (X:,?Jrk,yfwrkfl),uw(X:;i_py:kz_l)}

using the Euclidean norm ||-|| and define the |p,.n]|—NN estimate mg)(k,r,]v) via
)@l v DL
n,(k,r,N) —k Vs P
ﬁzzecﬂk ) » TN(Y;'_H) fn>k+ [prnj >k+1
= n(u0, vl RN
0 else

(|| denoting cardinality). We use here the assumption (A1) that, for each fixed k, for all vec-
tors (2°,,y"}) € REFDIFE the random variables H(X9k7Y:k1) — (ai(ik,y:]i)H have continuous
distribution functions and that for each sphere Sy g- in RFF1-4+Fk the family of such distri-
bution functions with “parameters” (mgk,y:i) € So,r+ is equicontinuous, i.e., the distribution
functions are uniformly continuous with respect to their argument s € R and the “parameters”
(2%, y:,ﬁ) € So r+. By the first part of (A1) ties occur with probability zero. Thus

(k:7r)

—1
n,(uo_k,v_k)

= Lprnj

with probability one. (Al) can be assumed without loss of generality. Similarly to Gyorfi et al.
(2002), pp. 86-87, we may add a component Z; to the (d + 1)—dimensional vector (X;,Y;), i € Z,
where the Z;’s are i.i.d. uniform [0,1] and also independent of the sequence ((X,,Y},)) In
view of Theorem 1 below we mention that because of independence

nez:

E(Yo | X0 YL, 2° ) =E (Yo | X°..Y ) as.

—00?

and that also the sequence ((X;,Y;, Z;)), 4 of (d+2)—dimensional random vectors is stationary and
ergodic. For, because of Doob (1953), p. 457, for an independent pair ((Us)iez, (Vi)iez) of station-
ary and ergodic processes with state spaces [ RY and | R4 , respectively, the stochastic
process (U, Vi));cq with state space [T~ RY i is stationary and ergodic, too. In our construc-
tion, assumption (A1) is fulfilled. To see this, observe that with abbreviations (X°,,Y7!) =W,

2%, =2, (2°,,y";) =w € So,r-, 2%, = z € [0,1]*! and corresponding Euclidean norms |wl,
||z||*, the distribution functions are given by

Fux(s) = P{IW-uwl’+1z -2 <s*}, s>0.

Since
Fo.(s) > P{||W—wH2 < k- 1} 51 (s — 00)



uniformly in w € Sy g-, it suffices to show that for arbitrary s,,., > 0 the functions F, . with
parameters w € Sp g+ and z € [0,1]%T! are equicontinuous on [0, $y4:]. Using

Fu.(s) = /P{Ze SW} Py (dt)

where (a); = max{a, 0}, we see that for w € Sg g+, 2 € [0, 1]**1 and s1, 52 € [0, Sy02] With s1 < 59
we have

|Fw,z(81) - Fw,z(52)| = Fw,z(52) - Fw,z(sl)

< /SO)R* (P{zes, ) —P{ZeS. jamimam:}) Pl
+Pw (56, 5+)

k+1 k+1

< . 2 e an2Y 2 (2 e 2) 2 -
_/SO,R*CkH ((52 It — w|| )+ (31 It — wl] >+ )PW(dt)+PW(SO,R ),

where ¢y is the volume of the unit sphere in R¥*!. By computing derivatives it is easy to see

that the functions
[251

5 (52 - w||2) g
+
(with parameters t € Spr and w € Sp g~) are Lipschitz continuous with uniformly bounded

Lipschitz constants, which implies the assertion.
For the fourth estimate, let DBj,...,Bgk, be bounded and continuous functions

B;: (R x R* — [~ B, B] for some B > 0, and set

K’V‘
Fer=1Y a;-B; : a;€[-LL] (j=1,...,K)¢, (2)
j=1

where K., L, > 0. Define the corresponding least squares estimate by

-1
- (4) Ca—1y : 1 i i—1 2
"%xhnNﬂ”d—")_%Hgfggﬂrn——kvig;Hﬂf@%—byr%)“TN(%)

This definition only makes sense if n > k + 1, so we set

_ (4) 0 —1. -1 .
~ (4) o ,—1.3-1\ _ J My (kN (ulpvTy3dzy) ifn>k+1,
My, (k,r,N) (ulyv2y3d2y) = {O ( ) else.

In the sequel let ¢ € {1,2,3,4}. Because we will need uniform boundedness of all experts for
fixed sample size, we choose 0 < s < % and set

O om0, A1) = T (mg}(kﬂ_,m (@ 4y d:}l)) .

m
We will define our prediction strategy as a convex combination of these experts using weights,
which are the higher the better the expert performed in the past. After n — 1 rounds of play the

normalized cumulative squared prediction error of mﬁf)(k rN) O the string d— defined by

LY (k,r, N) == L) (k, 7, N)(d_},)

-2
1 N .
T o1 Z (T (yj+1) = m.gJ)rn+1,(k,T7N)(mj+1’ d.,))?
j=-n




quantizes the performance of the expert in the past. Let (p.,n))k.rn)ep be a probability
distribution such that p, . ny > 0 for all (k,r, N) € P. Put ¢, = 8n** and define weights, which
depend on this cumulative loss, by

@ (—(n ~ )Lk, N))

wn,(k,r,N) ‘= P(k,r,N) " €xp Cn

We define our prediction strategy ﬁzsf ) as a convex combination of mﬁj)( ko N) using the normalized

values o
v i)( = Wy, (k,r,N)
n,(k,r,N) — @)
2 (ko N)EP Wy, (kN
of wfj’)(kmN) as weights, i.e., M is defined by

mg)(xm d:’}L) = Z Ufll’)(k,r,N) 'ms,)(k’r,N) (3307 di}z)‘
(k,r,N)EP

In order to estimate

— 00

m(X% . Y ) =E{Yy | X° .Y L},

we use the arithmetic mean of the first n estimates:

) (X0, D7)

—J

I
S|
>

msf) (Xo, 'D:}l)

3 Main Result

For fixed k € N we call a sequence of partitions (Pkﬂ")reN nested if the corresponding sequence of
generated o-algebras F (Pg,,) is increasing. Let Py, = {Ax . ;}; with Borel sets Ay, ; and denote
by Agr(z) the set A, ; which contains z.

Theorem 1. Let m be defined as in Section 2 (i €{1,2,3,4}).
a) Assume that in the definition of m&” the sequence of bandwidths h, > 0 satisfies
hy =0 (r— o0),

and that the kernel used in the definition ofrhg,)(kmN) is defined by K (v) := H (Hv||(k+1)'d+k),
where H is a nonincreasing nonnegative continuous function on [0,00) satisfying

H(0)>0 and t-H(t)—0 as t— oc.

Then )
E {‘mg})(XO,D:}L) - E {YO|X900,Y_‘010}‘ } =0 (n— o)

for all stationary and ergodic sequences ((Xp,Y,))nez of RY x R-valued random variables
with E {Y#} < oc.
b) Assume that the sequences (Pi r)ren of partitions used in the definition of me) satisfy:

(i) The sequences of partitions (Px ,)ren are nested (k € N).
(i) diam Ak, (2) = SUpy yea, . (2) |lu—v|| =0 (r — 00)
for each z € (Rd)kH x R* and every k € N,



(iii) |{Akyrj € Pr: Ay O [—L, LD, L 9L < 00 for allr € N and L > 0.
Then
{‘m@) X0, D=1 — B {¥|X° Y Oo}‘ } S50 (n— o)
for all stationary and ergodic sequences ((X,,Yyn))nez of R? x R-valued random variables
with E {Y#} < cc.
c) Assume 0 <p, -0 (r — c0) and (Al). Then

{‘m(?’) X0, D71 — B {¥|X° Y Oo}‘ }—>0 (n — o)

for all stationary and ergodic sequences ((Xn,Yyn))nez of RY x R-valued random variables
with E{Y§} < occ.

d) Assume that the function spaces Fy, , defined by used in the construction of mS’) satisfy:
(i) limsup,_, ., K, = oc.
(i1) limsup,_, ., L, = co.
(#i) For all k and for any probability measure p on (Rd)kH x R¥ and for every g €
Ly (RY)" X R¥, 1) it holds that

700

liminf 1nf /|g fI? dp=o.

Then )
{‘m(‘l) Xo,DZ,) —E{Yy|X° ., :010}‘ }—)0 (n — o0)

for all stationary and ergodic sequences ((Xn,Yyn))nez of R? x R-valued random wvariables
with B {Y2} < oo,

Remarks.

a) The condition on the kernel is for example satisfied if we choose H (t) = exp(—t?).

b) The proofs rely on pointwise consistency results for regression estimates. In order to apply
these results in case of the partitioning estimate, we need the condition that the partitions
are nested.

c) The conditions on the function spaces are for example met if we choose Fy , as a suitably
defined tensor product B-spline space (cf. Corollary 2 in Jones, Kohler and Walk (2011)).

4 Proofs

First we present some tools (Lemma 1-9) and then we prove Theorem 1. The following notations
will be needed in Lemma 1:

In the time series problem at each time instant ¢ = 1,2,--- the predictor is asked to guess
the outcome y; of a sequence of real numers yy, o, - - - with knowledge of the past (xl,yi DA
prediction strategy is a sequence g = {g; };~, of decision functions

gi: (RY! xR 5 R
and the prediction formed at time i is g;(z%,yi""). After n rounds of play, the normalized cumu-

lative prediction error on the string (z7,y7) is

Z giladyi ) — )’
i:l



Lemma 1. Let hy, ho,--- be a sequence of prediction strategies (experts), and let {qr} be a

probability distribution on the set of positive integers. Assume that h;(x7,y

yt € [=B, B]". Define

—(t— 1)Lt_1(izk)>

with ¢ > 8B2, and
o W, k
Ve k = o -
D g Wi

If the prediction strategy g is defined by
e ~
gt(xia yi_l) = th,k : hk(ztla yi_l)
k=1

then, for everyn > 1,

Ln(g) < inf (Ln(hk) _ CIHQk> .

n

Here —1In0 is treated as oo.

Proof. See proof of Lemma 27.3 in Gyorfi et al. (2002).

n—1
1

) € [-B,B] and

O

Lemma 2. Let m € Lo(u) and let m* be the generalized Hardy-Littlewood mazximal function of m

defined by

m*(z) = su 1
h>13 M(Sw,h)

Then m* € La(u) and
[ @rutde) < [ mia)utda),
where ¢* < oo depends only on d.

Proof. See proof of Lemma 24.7 in Gyorfi et al. (2002).

/ |m|dy  (z € RY).
Sa.n

O

Lemma 3. Let m € Lo(u), let (Pn)nen be a sequence of partitions, and let m* denote the corre-

sponding generalized Hardy-Littlewood mazximal function of m defined by

/ lm|dp (€ RY).
An (@)

1
m*(x) = sup

n f1(An(2))

If the sequence of partitions (P )nen is nested, then

m* € La(p)  and /m*(x)Qu(dx) <c /m(x)Qu(da:),

where ¢* < oo depends only on d.

Proof. See Problem 24.4 in Gyorfi et al. (2002).

Lemma 4. Assume

al(|z]) < K(z) < c2H(||z])) (2 € RY),

H(+0) >0,
t"H(t) =0 as t — oo,

where H is a nonincreasing nonnegative Borel function on [0,00) and ¢1,co > 0.

Then, for all p-integrable functions f,

oy JE (@ = 2)/W) f()u(d2)
W TE((w - 2)/hu(d2)

= f(z)

for p-almost all x € R,



Proof. See proof of Lemma 24.8 in Gyorfi et al. (2002). O

Lemma 5. Assume that the sequence of partitions Pp, = {An1,An2, -} of R? is nested and

diam Ay (z) == sup |ju—v|]| =0 (n— o)
u, V€A, (2)
for each z € R?. Then
o f(2)p(dz)
lim fAnU—( = f(2)

n—oo p(An(z))
for u-almost all z € R,

Proof. See Problem 24.3 in Gyorfi et al. (2002). O

The proofs of the next three lemmas will be given after the proof of Theorem 1.
In Lemma [6] we will need the following notation: For an arbitrary function f defined on the
image space of a random variable X define

||fHOO,5upp(PX) = sup |f(x)‘
z€supp(Px)

Lemma 6. Let ((X,,Y;))nez be a stationary and ergodic sequence of R? x R-valued random
variables.

Let By, ..., Bk be bounded and continuous functions B : (Rd) MCRE S [-B, B] for some
ke N,B >0 and set

K
F=4¢>a;-B; : aje[-LI (j=1,...,K)
j=1

for some L > 0. Define the least squares estimate m,, by

-1

> e YiEh) - T (v)

1=—n+k

. 1
m, = argmin

|2
fern—

for some N >0, and assume that n > k+ 1. Then
- i E{ X0, V1) - Ty (Y, 2}
f* = argmin (X2, YT = T (Yo)]

exists and
||mn - f*‘|oo’suPp(P(X9k,Y:£)) —0 a.s.

Remark. It follows from the proof of Lemma |§| that minger E {‘f(ng, Y:kl) _ 3/()’2} exists as
well.

Lemma 7. Let ((X,,Yn))nez be a stationary and ergodic sequence of R? x R-valued random
variables with E {Y{} < co.
With the assumptions of Theorem 1 a) and

E {yo K <<X°kvy,:z—<x“k,y;>) }
(1) ..0 —1 -
m r(xf Y ):: — —
k, k k E{K <(X0k,Yk1;L(ka,yk))}




or according to the assumptions of Theorem 1 b) and

Yolg,
)EA (22,
E{ {(x0,y _,:>eAk.r<xo_k,y:;)}}

or according to the assumptions of Theorem 1 c¢) and

E YO]_ 0 —1
(X250 Y )ES(. 0w ) Re (29, w4

br

3
mgc 3(3;‘ BY_ k)

(with arbitrary
Rk?,T('r(ikvy:k) [Rk: T(x Y ) Rk: r(x(ikay:]i)]

where {R;H,(z: oY) R (@ y k)} is the set of walues Ry,(z°,,y"}) such that

P(Xo - (S(m,k v R (20~ k)> = p,) or according to the assumptions of Theorem 1 d) and
m,(:ll = arg mm E{‘f (X%, Y - Y0’ }
it holds for i € {1,2,3,4}:

o i L 142
T J Ty
Lemma 8. Let ((X,,Y;))nez be a stationary and ergodic sequence of R? x R-valued random
variables with E {Yo } < 00, let mfl)(k N be defined as in Section 2 and let mk) be defined as in

Lemma 7 for i € {1,2,3,4}. With the assumptions of Theorem 1 a) or according to Theorem 1
b) or according to Theorem 1 c¢) or according to Theorem 1 d) it holds for arbitrary k,r € N and
i€{1,2,3,4}:

limsuplimsup E {‘mkz) Xok,Yfl) - mfj)(k TN)(ng,Y:kl;D:}L)‘Z} =0.

N—oo n—oo

4.1 Proof of Theorem 1

We recall that m(X° Y1) := E{Yy|X°_,Y "L} Using the definition of the estimate and the
inequality of Jensen, we get

] 2
E{\mw(xo,z?‘;) <X900,Y:;>\ }

2
1 Z” (i - -
=E { E mSl) (X07D_]1') - m(Xgocﬂy—olo)

Using

E{-Y |y - i\ (Xo, D=} ’
n ‘ ( o _j)

10



~ (i) - 0 NE 0 —14]2
il (X0, D7) = m(X00 Vo) + B{|Yo —m(x2, vb) )

which follows from
E { (m(.“ (X0, DZ1) = m(X° ., Y-, )) (Yo — m(X° ., chi;))}
= B{ (" (Xo,D7}) ~m(X0., VL))
B{ (Vo —m(X0, YoL) [ (X2 V2L } )
=E{ (" (Xo,D=}) = m(X° 0, Y=1)) (m(X°, Y2L) = m(X° o, Y=1)) } =0

for every j € {1,--- ,n}, we conclude

' 2
0 < E{‘mgf)(Xole) (Xoocwyolo)‘}

IN

E ‘Yo ) (Xo, D= )‘ —E{|Y0— (X?OO,Y:;O)\Q}.
ni3a
Therefore it suffices to show
. 1 - ~ (i _ 2 _ 2 «
limsupE ¢ =37 ‘Yo — ) (XO,D_;)‘ < E{|YO —m(X0 VL) } = L*.  (3)
=1
Using the inequality
1
(a+0)?<(1+a)a®+(1+—) b (4)
e

for arbitrary a,b € R, a > 0, one has

lim sup E Z\YO— 1l (Xo, D7)

n—oQ

n

1
<1 E<{ — 1
< lim sup - Z( + a)|m

n—oQ j=1

() (X0, D= ) — Ts (Yo)’2

n—oo

1 1
+limsup E - ;(1 + &)’T"S (Yo) — YO‘Q

With the assumption E { YOQ} < oo and Lebesgue’s dominated convergence theorem we get for the
last summand:

1., 1.
(1+ E) limsup E {|Tns(Y0) - YO}Q} <1+ E) limsup E {Y§ - 1y, 5ne1 } = 0.
n—oo

n—oo

Since a > 0 was arbitrary, (3] follows from

lim sup E Z}A” DY) ~T,.(Yo)|* p < L. (5)

n—oo

Ccn NPk N
n

Note that lim sup,, _, = 0. With the stationarity of the data and Lemma 1 we conclude

n

1
li E<{—
im sup - Z

il (Xo, DY) — Te (Yo) |

11



. . I NG 12
SthUpE{( inf__(~ S I (V1) = oy (X541, DY)

_ Cn ln(p(k,r,N)) ) }

n

. . ~ (7) ) 7N |2
S(k,r{%f)epllﬂso%pE{ Z‘T Vi) j7(kmN)(XJ+1’D1)| }

Using the inequality

n

1
lim sup — Z a; < limsupay,

n—roo ] 1 n—oo
for a, € R, the stationarity of the data and
|Tns(z) —Ths (y)| < |Z - y|a

we get

. ~ (1) ) 7|2
iher P ZE{W Vi) = (s DI}

= rber” E{Tm (V1) = 1y (K, DD}
(er]if)eP HILSup | +1) = 1, ey (Xt 9]

B ) —1y2
_(kr%f)ephnning{’T (Yo) - 7(k7N)(X0’D—”)‘}

. . i
S(kn-l,rﬁrf)ephﬂsipE{Wo (kTN)(X*k’Y—k’IDfn)‘ }

Let mg)r be defined as in Lemma Using

inf (ag,r +bgrn) < hm mf ak, + lim sup limsup by , n,
k,r,N o0 k,r t—=00 L r>t N—oo

we can conclude from Lemma Lemma |8 and inequality that we have for arbitrary v > 0

n

limsup E Z

n—oo

XOa ) _TnS(YO)|2

M 0 -1.p-1
= (oM P E {‘YO M e, o0) (X V5 D)

]
, 2
<(1++) lim inf E{‘Yo—ml(j))r(ng,Y_kl)‘ }

t—oo k,r>t

1
+(1+ =) lim sup limsup limsup

Y 2Ok r>t N—soo n—oo

_ ~ (1 _ _ 2

{‘m (X%, Y5 - (,)(krN)(Xglwy—kl;Df'rlL)}}
§(1+7)E{|}{)—m(X900,Y:;)\2}.

With v — 0 this implies (5). The proof is complete.
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4.2 Proof of Lemma

Within the proof, we will need the notion of sup-norm covering numbers, which we introduce in
the next definition.

Definition 1. Let ¢ > 0 and let G be a set of functions R — R. Every finite collection of
functions gy, ..., gy : R — R with the property that for every g € G there is a j = j(g) € {1,..., N}
such that

lg = 9jllo = suplg(z) — g;(2)] <&,

is called an e-cover of G with respect to ||-|| - Let N (,G,||-||.) be the size of the smallest e-cover
of G w.r.t. |||, take N (,G, |||l .) = 00 if no finite e-cover exists. Then N (e,G, ||||..) is called
the e-covering number of G w.r.t. |- and will be abbreviated to N (¢,G).

The proof will be divided into several steps. In the first step of the proof we show the existence
of f* as defined in the lemma and that whenever fi, fo € F satisfy

E{[f1(X% Y50 = Tw )} = B{ (X2 Y2 = T (%0)

A _ 2
:%12E{’f(X9ka—kl)_TN (Yb)| }7 (6)
then
/|f1(x9k,y;;) — o yZ) PP (o -1y (204, y75) = 0. (7)

Moreover, we prove that for arbitrary continuous f : (R?) T RF SR

J 176 u=hIaP oy @y =0 ®)

implies

||fHoo,supp(P(X2k,Y__kl)) =0. (9)

As for the existence of f* we observe that the minimization problem can be rewritten as follows:

it B{|7(x0, Y5 T (1)} = (a1, ax),

in g
at,....,ax €[—L,L]

where

K
glay,...ax) =EQ|> a;- Bj(X%,, Y1) = Ty (Yo)
j=1

It can be easily shown that g is continuous, thus f* exists.
Now suppose that fi, fo € F satisfy @ The definition of F implies

fi+ fo

9 e F.

Using (a + b)? = 2a% + 2b% — (a — b)? (a,b € R), we obtain

2
f].(ng-aY:kl) + fQ(Xg[wY:kl)

E
2

—Tn (Yo)

fl(ng,Y:kl) —TIn (YO) + f2<X9k7Y:k1) — TN (Y0> ’

=E
2 2

13



{!ﬁ X030 =T 00+ 5 B{ 00V — 1 0]

LBy - aey )

= min® {|£(X%,, v5) - T (%)}

l\')\r—l

_,E{\ﬁ (X2, Y50 = f2( X2, Y )|}

Because of the minimum property the last term vanishes and thus holds.

In order to show the last result of the first step, let f : ( )k+1 RF — R be continuous
and assume that |f(z%,,y~,)| > 0 > 0 for some (2°,,y"}) € supp(P(Xo - ))- Choose a ball §

around x with radius greater than zero such that |f] is greater than §/2 on S Then
0
/|f (@25 yZ k)'dP(XO ‘1)(55 kYo k) > ) 'P(XO y—l)(s) > 0.

—k gk
Thus implies @D

In the second step of the proof we show
_ 2
[ (@) = T ) 4P,y ) (02508%%)
= E{ X0, V1) — T (Ye 2} 8.
min |F(X2. Y5 —Tn (Vo) ass
Since m,, € F for all n, it suffices to verify

limsup/ |mn (wgk,y:i) —TIn (y0)|2 dP(ng,ygk) (m[lkvygk)

n—oo

gE{ “(X0,, vl — TN(YO)\} a.s.

But this follows from

/|mn (x(lk»y:i) —1In (y0)|2dP(xgk,ygk) (ff(lkayo_k)

—1

1
< n—=k Z |m”( i— k7Y7 1) T’N(}/i)|2
1=—n+k
B {2 -1 00
] —1
n—k Z ’f( i k»YZ 1) TN(YZ')|2
i=—n+k
JR— 2
— 2 P& Y -~ Tv ()
i=—n+k
s {5y - 0
1 = i—1 2
n—k Z |f( zk’Y ) TN(Yi)|

i=—n+k

o (st
42 sup ‘E{|f(X9ka__kl) v (Y0)’}

feF

14



-1
S LY Ty (),

i=—n+k

1

n—=k

where the second inequality is implied by the definition of m,,. By discretizing the coefficients a;
accordingly, it is easy to see that N (¢, F) < oo for arbitrary € > 0. By using the e-cover G.
and the boundedness of functions in F, the convergence of the last term can be reduced to the
convergence of

sup

E{]g(X%, Y5) - Tw (%)}
9€Ge

’9( LY - Ty (Yi)‘z ’ -0 a.s.,

for arbitrary € > 0. As G, is finite, this in turn follows from the ergodic theorem.
In the third and last step of the proof we show that for f,, € F with

/’fn (ng,y:i) TN (yo)‘zdp(xgwy_ok) (x(lkvygk)

—>E{

FXOYEN =Ty (W)} (> 0), (10)

we have

an - f*”oo,supp(P(ng’Y:kl)) —0 (n — OO)

Assume that the assertion is not true. Then we can find functions f,, € F such that

1 (a2 107) = T ) P 0,y (02 0%)

— E{ f*(ngaY:kl) - TN (Yb)’z}

and

||fn - f*||oo,supP(P y*l)) >4 (n S N)
Yok

0
(x9,

for some § > 0. By applying the theorem of Bolzano-Weierstrass successively to the coefficients of
these functions, we can construct a function f € F such that a subsequence of (f,,)nen satisfies

||f’ﬂk - fHoo,supp(P nykl)) —0 (n — OO) (11)

(x9,
But this implies

Hf_ f*HOO,supp(P y—l)) + ank - f”oo,supp(P
Yy

1)
(x9, (X0, ¥yTH

> ||fn;C - f*”oo,supp(P 71)) > d
K

(X90,.Y
for arbitrary k£ and thus by

||f_ f*Hoo,supp(P y,l)) > 0. (12)
Yk

(x9,
Let v > 0 be arbitrary. By inequality we have
= _ 2
E{|F(X°, Y2 - T (o)}

< (1 +’7)/‘fnk (‘T(lkvy:ji) — TN (y0)|2dP(ng7YEk) (xgkvygk)

15



(00 3) 1 e - P
dP(ngin’k) (:U(i,C7 ygk)

< (1 +7)/|fnk (‘ro—lmy:/i) — TN (y0)|2dP(X8k’Y9k) (x(llwyo—k)

1
+ (1 + 7) ||fnk f”oo supp(P(ng)Y:k;))'
Because of and , this implies

E{[F(X%%Y5) ~Tw ()} < 0+ ) E{ |7 (X2 Y5h) - Tw ()}

for arbitrary v > 0 and thus, by definition of f*,

{‘f (X0, Y = T (Vo) } {|f (X0, Y — T (Yo)| },

in contradiction to and what we have shown in the first part of the proof. This completes
step three. Combining the results of steps two and three, we see that Lemma [f] indeed holds. O
Remark. If |Yy| < B almost surely for some 8 > 0, we can drop the truncation operator
throughout Lemma [6] by choosing N accordingly.

4.3 Proof of Lemma [7]
By Lemma {4| and Lemma respectively, we get for ¢ € {1,2}

lim mgc) (x(ik,y:i) =E {YO ‘ ng = mgk,Y:kl = :é (13)

r—00
for P(X() 1) -almost all (2%,,y7;) € (RY)FHL x RE, 1' also holds for ¢ = 3, because p, —
0 (r — oo) implies k’r(:cfk,y_k) = 0 (r - o0) for P(ngﬁY:b—almost all (x(ik,y:i) €

(R%)*+1 x R¥ which allows to apply Lemma
Arguing as in the proof of Theorem 24.2 in Gyorfi et al. (2002), we get for m,;

E{YO K ((X“k,Y‘,jL:(zf’my‘,t))}

@a )

()

mkr(x k7y k) S sup —1 —1
>0 (X0, Y ,)— (2% y"y)
E {K < k khr k k )}
0 —1 0 —1
Co fS(zO Wbk ’mk(u_kﬂ ,U_k)| dP(ng’Y:li)(u_’w v_k)
< Zsup AL ,

C1 h>0 P(ngy:}() (S(z‘lk,y:}c)vh>

and an analogous result (with ¢; = ¢ = 1) for mk . Obviously, we have in addition

ml(c22=(x0 k> ?f;i)
Janr (@2 oz Il 0O AP oy (24 075)
< sup
r>0 P(X'LU -1 (A;w ((xik,yik)))

Using these relations, Lemma [2| and Lemma |3] respectively, and the dominated convergence the-
orem, we see that implies for ¢ € {1,2,3}

X 2
lim inf E{‘Yo—méfl(X°k7Y£)‘ }

t—oo k,r>t

16



, 2
< limsuplimsupE{‘YO - m,(:zn(ng, Y_—kl)’ }

k— o0 T—00

= limsupE{]Yo ~E{Y; | ngay:kl}ﬁ}'
k—o00

The sequence (Mj,), oy == (E{Yo | X°,, Y }) pen 18 a martingale with the property supyey E { M} } <
E {Yoz} < 00. By Loéve (1977), 32.4.A, we know that M} converges almost surely and in Lo to a
square integrable random variable and the limit is E {YO | X0, Y__Olo}. Now we can conclude

limsup E{[Vo ~ E{Yo | X%, Y5} = E{|¥o - m(X°., Y1)’}

k—o0

and the proof is complete for i € {1, 2, 3}.
Fori=4set L* == E { Yo — E{Y,|X° Y__olo}‘Q}. Straightforward calculation leads to

—00?

E{|F(X20 Y2 = Yo'} = L' + B {|B{Y|X 0, Y2L} — B{Vol X%, Y

B 12
+E {}E{Y0|X9ka Y_kl} - f(nga Y—kl)} } :
for arbitrary f € Fj . Thus by definition of m,(:fl

2
lim inf E{’Yomi‘fi(XEk,Y‘kl)‘ }

t—o0 k,r>t -

— lim inf inf E{\f(XEk,Y;kl)—m|2}

t—oo k,r>t fEFk,,

- . . . 0 —1y 0 —1,|2
=L +tgrgok{gt(@gﬁmE{lE{YoX_k,Yk} Fx0YShI
+E{ B VL) - Bl Y5 ) )
* . _ _ 2
<L +h£nsupE{|E{mX9wY,;}—E{%\Xﬂk,K;H }
— 00
S . 0 —1y 0 —-1y]2
+lim il ot B{[BOGIX YL - FOC Y]

As seen before, the second term of the right-hand side above equals 0. For the remaining term set
Iy =d- (k+1) + k, identify (R?)*"! x R¥ and R* and put

gr(zy) =E{Y|X%, =2, Y =y}.

Then, by the inequality of Jensen, gx € Lo (le,P(Xo Y71)> and
Ktk

_ 12
E{|E {)/0|X9k7Y_ 1} - f (ng7Y_k1)| } = /]Rl |gk(xay) - f(xvy)|2 dP(ng,Y:’j)(xvy)
k
This allows us to conclude from assumption (4i7) that

lim inf inf E{|E{%\X9k,Y:k1}—f(XEk,Y:,j)]2}

t—00 k,r>t f€EFk.r

< liminfliminf inf E{]E{%|X9k,ij1} - f(XEk,Y;kl)f} —0.

k—oo r—00 fEFy ,

The proof is complete. O
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4.4 Proof of Lemma

There is no loss of generality in assuming n > k + 1 throughout the proof. In order to bound
E {|mi, (X0, Y30 = il e (X0 55D

—n’ —71’

we add an auxiliary quantity defined by

0 —1y_ (50 1
E{TN(YO)K ((Xk,y_kzl ( kvy_k))}
(1) 0 .
T, _
(krN)( —k Y k) E{K ((Xok,Y,j)—(ka,y;)>}
-

E {TN<Y0)1{(X2k,Y:;)eAk,r(@O_k,y:;))}}

E {1{(X9k,Y:;>eAk,r((z9k,y:,1))}}

for i =1, by

2 _
mgk?r,]\r) (l'(lkay_li) =
for i = 2, by

(3) 0 1
m Ty, E Tn(Yy)l _
(k) (T2 Y ) = - { N(Yo)Lyxo, vhes T b}}

with arbitrary Ry ,.(z°,,y"}) € [er(x oY L), Ry (2%, y” k)} for « = 3 (for notation see
Lemma 7) and by

mEi?T,N) = arg mln E{’f (X%, Y5H — Ty (Y0)| }

for ¢ = 4.
With inequality (4) for 6 = 1 we get

hmsuphmsupE{|m(z) (X%, Y H—-m 2 (X2, YD) }

N—oco n—oo (ko N)

< 2limsup B {Imi (X0 Y5 = miy, (X0 Y|}
—00

. - (i 1142
—|—211]{]nsuphmsupE{’m(kTN)(X9k7Y_k1) !’ )(kTN)(ng,Y_kI;DJL)‘ } (14)
—o0  n—

Considering the first summand of (T4), we have for arbitrary k, N € N

0 —1\_/..0 —1
E {lYO ~ Ty (V)| K <<kaY—kgl <M7y_k>)}
(1) (1) ( 0 _1) < -

i@y Th) = mll a0 < E{K ((x Y- <>>}

E{|Y0|K ((Xokay_klilr(zok’y_i)>}
(X0, Y =0y~ h) '

With the same argument as in the proof of Lemma [7] we have that this upper bound is square
integrable.

Because of K > c¢- 1g, ,, for suitable ¢ > 0, R > 0, where Sp r is the ball in (R?)k*! x R*
centered at 0 with radius R, we have

X0,V ) = (2%, y7)
E{K<( : k)h Lo > ¢ Prxo, vy (Sorn +(@2py5)) >0 (15)
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P(nginl) — almost everywhere (cf., e.g., Gyorfi et al. (2002), pp. 499, 500). Thus we obtain by
applying the dominated convergence theorem

0 =1y _ (20 -1
E {|Y0 —Tn (Yo)| K ((kay_kil.( M_k)) }
=0

1\;13100 (X0, YT H)—=(2%,,v")
—k kK —kwY—k
b {ie (it )

P(XO -1 — almost everywhere.
Another application of the dominated convergence theorem yields for the first summand of

incasei =1
0 -1y _ 0 —1y]2
A}EPOOE{’W (XZp, Y5,) = (;”N)(X B Yo k)’ }

— (1) (50 ~1 (1) 0 -2
=E{ Jim [m()(X%, Y5) = mi) o (X2 v} =o.

Similarly to the proof for i = 1 we can conclude
_ 142
h]{]nsupE{|m (X%, Y- - Ei)r N)(ng,Y_kl)’ } =0.
—00

Further

1 3 -
‘mkr o5 yTy) - mEk?T,N)(ngmyfi)‘

Yo — Tv(Yo)[1 . }
{ {X B 1)68 O v Ti) R (20 g u k)}

<
Pr

for all (z° 6 Y k) thus by the dominated convergence theorem

2
lim E {‘m(?’) (X%, YD) - m;(f},N (ngvy:kl)’ } =0.

N—o00

By definition of mg& N m,(:i)«, respectively, it holds for arbitrary ¢ > 0 that

2
B {02 - [}
) 0 y-1 2
< ES[mi o (X0 Y5) = Yo
< (4) 0 y-1 2 1 2
< (1U4+6) B ), (X0 Y5h = T (%) ¢+ (145 ) - B{Yo - 7w (%)}

<) B{ |, (10 v - T )| o (14 3) B {0 - T ()
< (1+6)2- {‘m(kT)(XOk,Y) YO) }+(2+5)'(1+(1$>'E{|YO—TN(YO)|2}'

As 6 > 0 was arbitrary, we obtain

2
lim E{‘m(krN)(XO Yo - Yo‘ }: {‘m,”)(xo Y_kl)—Yo‘} (16)

N—o00

As in the first step of the proof of Lemma [6] we have for arbitrary N
4 B 2
E {)mgk?r)(XOmYkl) - YO‘ }
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4 — 4 —
<E mgk),r)(XEMY—kl) + mgk),r,N)(nga YZ,)

- 2

- Yo

1 _ 2 1 _ 2
9 E {’mgi?r)(XokaY—kl) - YO‘ } T E{’mgi),r,N)(XOkaY—kl) - Yo’ }
1 4 - 4 ENE
- ~E{\m5k2) (X0 VI = mip) ) (X0 Y2 } .
Because of (16| this implies

2
limsupE { ‘mgi)ﬂ (X%, Y1) - mgi),r,N)(ngv Y:kl)’ } =0.

N —oo

Considering the second summand of decomposition for i = 1 we have by the ergodic
theorem:

—2 i+1 i 0 -1
1 (X e Yipy) — @2y ")
n—k > TN(K‘H)K( I
i=—n+k—1
X0 Yo — (2%,
—>E{TN(YO)K<( —k *’“)h (@ yk))} a.s. (17)
and
1 = K (XY ) — (2%, uTy)
n—=k Z hy
i=—n+k—1

e {K <(X9k,y_,j)h—. (x(ik,y_i)>} 0.s. (18)

Because of the continuity of the kernel function K and K (v) — 0 (||v|| = o0) we can use an ergodic

theorem applied to random variables with values in the separable Banach space of continuous

functions vanishing at infinity with supremum norm and get that the almost sure convergence

above is uniformly with respect to (z°,,y"4) (cf., e.g., Krengel (1985), Chapter 4, Theorem 2.1).
Let € > 0 be arbitrary and define

5 = {(x(ik,y:i) € (R x R* . E {K ((ng,Y_kl)h_ (x(ikvy_zi)>} > e}.

>From we know

P(ng,Y:}()(Se) -1 (e—0).
In addition we can conclude
~ (1) 0 -1 (1) 0

-1, —1
sup ‘mn,(k,r,N) (@, y_5:D_y,) — LTS (x_k,y_k)‘ —0 a.s.
(20 4 yZR) ERAFFIXRE, (20, y~ )ES,

By the boundedness of mE,lf)T N)(-) and rhs)( e N)(-) by N and the dominated convergence theorem

we get for arbitrary k,r, N € N and € > 0
lim sup E {|mE,1€?T,N) (X%, Y- - ) (X%, Y5 D:,ll)|2}

n,(k,r,N)
n—o00

< lim sup lim sup <4N2 E{15:(X%, YD}

e—0 n— oo
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+E{ Sup mfll)(krN)(mgkay:li;D:}z)_
(@0 4,y " p)ERIGFDFR: (20, y=yes T

1 B 2
mEk?r,N)(xO*’W y_,i)’ })

< limsup4N2P(ng’Y71)(Sf) = 0.

e—0 -k

Next we consider the second term for ¢ = 2 for fixed k,r € N. By the ergodic theorem we have

-2

1
— D Tl vi edr (s2,00)}
i1=—n+k—1
—>E{TN(YO)]'{(XEMY:;)GAI«,T(IO,k,y:,lc)}} a.s. (n—)oo)
and

1 —2

n—k. Zk 1 1{(Xfii+17Y7:i—k+1)eAk~T(””0—fcvyii)}
1=—n+k—

—E {1{(X3k7Y:1)€Ak,r(I°_kJii)}} a.s. (n — o00).

With the third assumption of Theorem 1 b) we get that for k, r fixed the almost sure convergence
above is uniformly with respect to (2% y:i) on any compact set (since for any compact set C' we

have that [{Ay,(z%,,y"4), (#°,,y_4) € C}| is finite ). Let L > 0 and € > 0 be arbitrary and set

S0 -1 _ d-(k+1)+k
Strei={ @0 y7h) € [-L, L] B {10, v ean by ) 2 )

Because Sr,r,e; € SL,re, for €1 > € it holds S7 , . 257 . and
ﬂ Sz,r,e N [_L7 L]d~(k+1)+k
e>0

- d-(k k. —
= {(xgk,y_i) S [_L,L] ( +1)+ : E {1{(ng7Y:k1)eAk,7-($(ik7y:i)}} = 0} .

By assumption (iii) we know that (), S§ .. N [~L, L]**TY+* is contained in the union of
finitely many sets from Py, with P( X0,y }y-measure zero. As a consequence we have

Pixo, vy (Sine ML D) 00 (e 0).

>From the relations above we can conclude in addition

) — (2)

~ (2 _ _ _
mfl’)(kmN)(xo_my_rlL;D_}L m(kyr’N)(m(ln3y—’}L) =0 as.

sup
’ygn)ERd(n+1) SRT:

0
=0,

(20 4 Y= )ESL re

With the boundedness of mgi?h N)(~) and 771512)(,” N)(~) by N and the dominated convergence the-
orem we get for arbitrary k,r, NV € N,

lim sup E {}m(2> (X0 Yo =) (X0, Yo X, DY) |2}

msu (k. N)
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L—oo e—0 n—00

< lim sup lim sup lim sup <4N2 -E {1SE . m[_L7L]d.(k+1)+k(XE]WY:]CI)}
+4N?% . E {1([_L7L]d.(k+1)+k)c(ng, Y:kl)}

- (2 2 _
JFE{ sup (,)(krN)( (1”7y_71“rD }L) gk)rzv)( gnvy—rlz)

(@0 .y~ L)erd(ntl) xgn.

)

Now we consider the second term of decomposition for i = 3. We shall use arguments of
Gyorfi, Udina and Walk (2008). It suffices to show

(2%, .y~ 1)ESL e
=0.

2
{‘mn (k, TN)(ng’Y:kl;D") Ek)r N)(ngvy:kl)‘ } —+0 (n—o0) (19)

for each N > 0. For € > 0 arbitrary and R* = R*(e) > 0 sufficiently large the left-hand side above
is bounded from above by

- (3 _ 3 ENE
T U ot S R C L s | S PR (5 L ) A

and thus because of boundedness and the dominated convergence theorem it suffices to show
= (3) 0 -1 (3) 0 —1y[? 0 -1
My o) (X =i Y3 D) =y (X2, Yo )’ sy e (X2p, Y2 ) = 0 as.

for each R* > 0. The latter is obtained if for each R* > 0 one can show

G

,(krN)(fU kY1 Dn) = m

3 _
Ek?r,N) (2%, y74) a.s. (20)

uniformly with respect to (z°,,y",) € So g+
As an auxiliary result we state a.s.

n—k —i —i—1 o -1
1 (Xfifkayfifk) — (x—k’y*k)
n—Fk Z:l 15'0,1 ( R
(X0, V1) — (2%, u74)
o {150,1 ( R P(Xilw Y30 (S(f(lk’y:}e)’R) 2D

uniformly with respect to (2% ,,y";) € So.g+ and R € (0,00).

First we show (D for R € [Ry, Rg] with arbitrary Ry > Ry > 0. Let K1, K, (0 <e < %)
be continuous kernel functions satisfying 1g5,, . < Kj < 15,,, 15,, < Kz < 1g,,,.- Let
R(E+1D-d+k he endowed with the Euclidean norm || - || and R = RF+14+k x [R; | Ry] be endowed
with the Euclidean metric. Further let C*(R) be the separable Banach space of continuous real-
valued functions g on R satisfying g(x,y) — 0 (||z|| = oo) uniformly with respect to y € [Ry, Ra],
endowed with the maximum norm and the corresponding Borel o-algebra. Then as in the context
of and (18), by the ergodic theorem in Krengel (1985), Chapter 4, Theorem 2.1, one obtains

for I € {1,2}
1 nikK ( —i— k’Yli 1k> ( gk??/ili)
n—=k P Le R

e
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uniformly with respect to (z°,,y";) € REFD4TE egpecially (2°,,y~}) € So e, and By < R <
Rs.
But

X0, v = (2207,
E{Kl,e (( k k)R ( k k)>} _>P(ngvy:)3) (S('Lglwy:i)’R) (€—>0)

uniformly with respect to (22, y:,i) € So,r+ and R; < R < Ry by the bounds of K and assumption
(A1). This yields for R € [R1, Ra).

Next we show that it suffices to show for R € [Ry,00) with arbitrary Ry > 0. For, in this
situation, choosing an arbitrary € > 0, because of (A1) an R’ > 0 exists such that

P(Xo,k,Yj,j)(S(m‘lk,y:,ﬁ),R) <e forall (z°,,y7;) € So.g+ and all R € (0, R'].

Further the left-hand side of is majorized by the left-hand side of for R = R’ which a.s.
converges to

P <e

(Xﬁka:,J)(S(xO_k,y:;),R/)

uniformly with respect to (z°,,y"4) € So r~. Thus a.s. for n sufficiently large the left-hand side
of and the right-hand side of differ at most by 2 - € for (z°,,y7}) € So r-. Similarly,
by a minorization argument, it even suffices to show for R € [Ry, Ry] with arbitrary fixed
Ry < 0o, which completes the proof of (21)).
Set
Zy, (x(ik,y:,i) = ||(the |prn]-th NN of (xo_k,y:i) among
(X Yol (X YEE) = ()

We notice

n—k
a0 (S <2

—1
—iow ik )€960 Lyl R

0 < R < o0, and % — pr. Let 0 < € < min{p,,1 — p.}. Choose R,;;(x(lk,y:i) as the largest
R satisfying P(X(lk,Y_’,j)(S(z(lk,y:i),R) = p, — € and Ri’r(x(ik,y:,i) as the smallest R satisfying
P(ng,y:;)(S(xo_k’y:uR) = p, + €. Then by a random index N, independent of (z°,,y";) €
So,r+ exists such that almost surely for all n > N, the above event appears if R < R, (2% 4,y 1)

and does not appear if R > RS (2%, y:,i) Because of (A1) we have

,r
R;;(I‘O_k, y:]};) T R;f,r(x(lka y:]i) and R;,r(mo—kv y:]};) \l/ Rg,r(x(lka y:]i)

uniformly with respect to (ac(l,€7 y:,i) € So,r~ for e = 0. Therefore the distance between Z,, (x‘lk, y:;)
and the interval

[Rha (@20 y70) » B (225 974)]
converges to zero uniformly with respect to (z°,,y~}). We notice that (X~} ,,Y'7!) is among
the |p,n] NNs of (z0,,y"}) in (XZpHr, yorth=t) 0 (XZ),,Y22,,) if and only if

(X Y55 = (0% ym) | < Zu(@iyTh)-
Then a.s. for n > N, we have the implications

I(XT 0 Y50 = (@ ymh)] < RGO y7h)
= (X:Zik,Y:f:kl) is among the |p,n] NNs of (z%,,y7;) in
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B ) NG I )
= ||(X:iifk’y:ii:k1) - (xo_k,yii)H < Rk 1(93 koY k)
We introduce the sets

7(k,r)
nv(x(ikay:)i)

=i mrk i< 1 (XY - 0w D < RGOy h)

and

7(k.r)
n, (2% .,y })

= {z —n+k<i< -1, H(X i k,Y:zz kl) (x o Y k)H <R,M(x e Y k)}
Without loss of generality assume Y; > 0. The auxiliary result also holds if in the left-hand

side and in the right-hand side the uniformly bounded random variables T (Y;) and Tn(Yp),
respectively, are inserted as factors. By in both versions, we obtain a.s.

- Tn(Y;
n= kzze%‘f(:“ T ”% {TN YOIL() (x0, y=2)~ (a2, 07 <R 0 m}}
(kr -
il (a0 ,.y" k)‘ {H( 95, Y50) = (2% w53) | ngvr(x—k’y—’“)}
(22)
and
o et T E{TN YOIl (x0 v )~ (0 ) <) wk,y,t)}}
= i P {]|(x%.Y5) = (2%vb) | < RO @nuh }
(23)

uniformly with respect to (x(lk,y:,i) € So,r+. For € — 0 the right-hand sides of and
converge to

E{TN(YO)]‘{H(XO —1) (z oY k)H<Rk (20 Y_ k)}} (3)

=m 22,
P{H(ng»y:kl) (x kY- k)H < Rir(22),y” k)} (]”N)( ki k) 24

uniformly with respect to (:v k,yfk) because the denominators in the right-hand sides of
and (| and in the left-hand 51de of (24)) are p,. + €, p, — € and p,., respectively, and because the

correspondmg numerators in and (23] differ from the numerator in (24) at most by N - e.
Z

3) 22) and we can

Since m o (ko N)(J? ) y_,i, Dn) is included between the left hand sides from

conclude from and . that ( and thus also ) holds.

For i = 4, denote by A the support of P(ng)y:lj). As n > k+ 1, by definition

~ (4) 0 -1.p-1 (4) 0 12
{‘ n,(k,r,N) X—k’Y—k’D— ) (krN)(X—k’Y—k)’ }

2
_ = (4) 0 —1.p-1 (4) 0 -1
=E {‘mn,(k,r,N) (X—k’ Yfk ’D—n) Mk N) (X—k7 Yfk )‘ }

_ _ 4 _ _
B[l (E0 V25D il (X0 Y[ a2 Y50 )

24



= (4) (4) 2
< E {“mn,(k,r,N) — m(k’T’N)Hoo’supp(P(XOk,Ykl))} .

By definition of m;‘f)(kmm we can apply Lemma @ (where f* = mE?T’N)). Moreover, the bound-
edness of functions in F} , allows us to apply Lebesgues dominated convergence theorem which

yields
n—oo (ko V)

2
hmsuPE{‘msZk,r,N) (ngvY:1c1§D:711) —mly) (ngay:kl)‘ } =0.

The proof is complete. O
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