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ITERATED FIBRE SUMS OF ALGEBRAIC LEFSCHETZ FIBRATIONS

ABSTRACT. Let M denote the total space of a Lefschetz fibration, obtained by blowing up a Lefschetz
pencil on an algebraic surface. We consider the n-fold fibre sum M(n), generalizing the construction
of the elliptic surfaces E(n). For a Lefschetz pencil on a simply-connected minimal surface of general
type we partially calculate the Seiberg-Witten invariants of the fibre sum M(n) using a formula of
Morgan-Szabó-Taubes. As an application we derive an obstruction for self-diffeomorphisms of the
boundary of the tubular neighbourhood of a general fibre in M(n) to extend over the complement of
the neighbourhood. Similar obstructions are known in the case of elliptic surfaces.

1. INTRODUCTION

It is well-known that the sequence of simply-connected elliptic surfaces E(n) without multiple
fibres can be constructed from the elliptic surface E(1), diffeomorphic to CP2#9CP2, by fibre sum-
ming along general fibres [6]. The elliptic fibration on E(1) can be obtained by considering a certain
Veronese embedding of CP2 into a complex projective space and then taking the blow-up of a Lef-
schetz pencil. We consider the following generalization: Let M ′ denote an arbitrary smooth algebraic
surface. It admits a Lefschetz pencil which extends to a Lefschetz fibration on some blow-up M .
We can consider the iterated fibre sums of these fibrations, yielding a sequence M(n) of symplectic
manifolds with an induced Lefschetz fibration over CP1.

We describe the basic topology of these manifolds in Section 4. For example, if M is simply-
connected, then all M(n) are simply-connected and there is a description of the intersection form and
of the canonical class. Considering the Seiberg-Witten invariants of M(n) we show that if M ′ is a
minimal surface of general type, then the only basic class up to sign of M(n) for all n ≥ 2 which
has non-zero intersection with the fibre is the canonical class. To determine the Seiberg-Witten basic
classes of the fibre sumM(n) we use a formula of Morgan, Szabó and Taubes. In general this formula
involves a sum over several characteristic classes. However, in the case of the manifolds M(n) there
is only one summand and the formula completely determines the basic classes under the mentioned
constraint.

We then give an application of these calculations to the question which orientation preserving
self-diffeomorphisms of the boundary of the tubular neighbourhood νΣ of a general fibre in M(n)
extend over the complement M(n) \ int νΣ. In the case of elliptic surfaces E(n) a complete answer
to the corresponding question is known [6]: For E(1) every diffeomorphism on ∂νΣ extends over
E(1) \ int νΣ and for E(n) with n ≥ 2 only if it preserves the torus fibration on the boundary. For
the manifolds M(n) we derive a criterion that can be used to show that certain diffeomorphisms do
not extend over the complement.

2. LEFSCHETZ FIBRATIONS

Let M ′ be a smooth algebraic surface in some CPN of degree r so that

[M ′] = r[CP2] ∈ H4(CPN ;Z).
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2 ITERATED FIBRE SUMS OF ALGEBRAIC LEFSCHETZ FIBRATIONS

Choose a hyperplane H ∼= CPN−1 in CPN intersecting M ′ transversely. According to Section 1.5
and 1.6 in [10] there exists a Lefschetz pencil containing H as one of its hyperplanes. A pencil is the
set of hyperplanes which contain a given linear subspace A ∼= CPN−2, called the axis of the pencil.
The axis A intersects M ′ transversely in r points forming the base locus B. Blowing up these points
results in a fibration

M = M ′#rCP2 −→ CP1.

This is what we call an algebraic Lefschetz fibration. A Lefschetz fibration has finitely many singular
fibres where the singularities have a certain normal form. We can assume that each singular fibre has
precisely one singularity. The generic fibre ΣM is given by the proper transform of a non-singular
hyperplane section ΣM ′ inM ′ determined by a generic hyperplane in the pencil. We denote the genus
of ΣM by g.

By the first Lefschetz Hyperplane theorem, the homomorphism

iM : H1(ΣM ;Z)→ H1(M ;Z),

induced by inclusion for a smooth fibre ΣM is a surjection. The so-called second Lefschetz Hyper-
plane theorem [1] shows that the kernel of this map is generated by the set of vanishing cycles. The
vanishing cycles bound embedded disks in M , called Lefschetz thimbles or vanishing disks, which
intersect ΣM only in the vanishing cycle and contain precisely one critical point of the fibration. The
vanishing disks are formed above certain arcs in CP1. For each critical point there is a corresponding
vanishing cycle and a vanishing disk. If we frame a vanishing disk D on its boundary by the direction
normal to the cycle inside the fibre, then D has self-intersection equal to −1.

The fibration defines a natural framing for the tubular neighbourhood of a general fibre ΣM in
M . Consider a diffeomorphism between the fibres in two copies of M that identifies the vanishing
cycles. Lift the diffeomorphism in the standard way to an orientation reversing diffeomorphism of the
boundary of the tubular neighbourhoods using the framing determined by the fibration. If we form the
generalized fibre sum, we get a closed symplectic 4-manifold

M(2) = M#ΣM=ΣM
M.

We can iterate the construction to get symplectic 4-manifolds M(n), where

M(n) = M#ΣM=ΣM
M#ΣM=ΣM

. . .#ΣM=ΣM
M.

By our choice of gluing the Lefschetz fibration on M extends to a symplectic Lefschetz fibration on
M(n).

3. FIBRE SUMS AND THE MORGAN-SZABÓ-TAUBES FORMULA

We recall some results about generalized fibre sums [7, 8]. Let M and N denote closed oriented
4-manifolds with closed oriented embedded surfaces ΣM and ΣN of genus g and self-intersection
zero. We choose embeddings

iM : Σ→M

iN : Σ→ N

that realize the surfaces as images of a closed oriented surface Σ. We fix framings Σ × D2 of the
closed tubular neighbourhoods νΣM and νΣN and denote the manifolds minus the interior of the
neighbourhoods by M0 and N0. We want to glue M0 and N0 together using an orientation reversing
diffeomorphism φ : ∂M0 → ∂N0 that preserves the circle fibration and covers the diffeomorphism
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iN ◦ i−1
M between the surfaces. In the chosen framings any such diffeomorphism is isotopic to a

diffeomorphism of the form

φ : Σ× S1 −→ Σ× S1,

(x, α) 7→ (x,C(x) · α)

where the bar denotes complex conjugation and C : Σ → S1 is a smooth map. The map φ depends
up to isotopy only on the cohomology class C∗dα ∈ H1(Σ;Z) that we also denote by C. The result
of the generalized fibre sum is

X = M#ΣM=ΣN
N = M0 ∪φ N0

and in general depends on the choice of the cohomology class C.
It is well-known that the Euler characteristic and the signature of X are given by

e(X) = e(M) + e(N) + 4g − 4

σ(X) = σ(M) + σ(N).

Suppose that ΣM and ΣN represent indivisible homology classes. Then the first homology of X is
given by the cokernel of the homomorphism

iM ⊕ iN : H1(Σ;Z)→ H1(M ;Z)⊕H1(N ;Z)

induced by the embeddings.
We want to describe the second homology of X . Assume that M , N and X have torsion free

homology and ΣM and ΣN represent indivisible classes. The framings determine push-offs of ΣM

and ΣN into the boundaries ∂M0 and ∂N0. Under inclusion in X we get surfaces ΣX and Σ′X .
There also exist surfaces BM and BN in M and N which intersect ΣM and ΣN in a single positive
transverse point. Since the gluing preserves the meridians {∗} × S1 these surfaces sew together in
X to a surface BX . We define P (M) to be the orthogonal complement of the span of ΣM and BM
in H2(M ;Z), and similarly for N . A curve on ΣM times the meridian σM defines a torus on ∂M0.
Under inclusion in X this is a torus of self-intersection zero, called a rim torus. It is null-homologous
in M but not necessarily in X . There are also so called vanishing surfaces in X (see [4]), sewed
together along curves on the push-off of ΣM in ∂M0 and a curve on ∂N0 which get identified under
gluing and bound in M0 and N0. With these preparations we can describe the second homology of X
and the intersection form. Let c denote the rank of the kernel of the homomorphism iM ⊕ iN above.

Theorem 1. There exists a basis S1, . . . , Sc of the vanishing classes S′(X) and a basis R1, . . . Rc of
the rim tori R(X) such that there exists a splitting

H2(X;Z) = P (M)⊕ P (N)⊕ (S′(X)⊕R(X))⊕ (ZBX ⊕ ZΣX),

where
(S′(X)⊕R(X)) = (ZS1 ⊕ ZR1)⊕ . . .⊕ (ZSc ⊕ ZRc).

The direct sums are all orthogonal, except the direct sums inside the brackets. In this decomposition of
H2(X;Z), the restriction of the intersection form QX to P (M) and P (N) is equal to the intersection
form induced from M and N and has the structure(

B2
M +B2

N 1
1 0

)
on ZBX ⊕ ZΣX and the structure (

S2
i 1

1 0

)
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on each summand ZSi ⊕ ZRi. We call such a basis for H2(X;Z) a normal form basis.

The vanishing surfaces Si are obtained from a basis α1, . . . , αc for the kernel of iM ⊕ iN . Suppose
we only have a generating set for this subgroup. Expressing each basis element αi in terms of the
generating set we have:

Proposition 2. Let S̃1, . . . , S̃e denote vanishing surfaces obtained from a generating set for the kernel
of iM ⊕ iN . Then we can write each vanishing surface Si in Theorem 1 as a linear combination of
the S̃j and certain rim tori.

The rim tori are needed in this proposition to separate the different vanishing surfaces that we get.
Generally speaking, we fix a basis of rim tori and then determine a dual basis of vanishing surfaces.
A basis of rim tori in one generalized fibre sum determines such a basis in all of them.

There is a formula for the Seiberg-Witten invariants of X due to Morgan, Szabó and Taubes [13]
that we want to describe in our notation. The formula works only if g ≥ 2. Recall that the Seiberg-
Witten invariant of a closed, oriented 4-manifold with b+2 > 1 is a map

SWX : Spinc(X)→ Z.
There is a related invariant

SWX : C(X)→ Z
defined on the set C(X) of characteristic elements inH2(X;Z) by summing over all Spinc-structures
with the same first Chern class. Under our assumptions a Spinc-structure is determined by its Chern
class. A characteristic class k ∈ C(X) is called a Seiberg-Witten basic class if SWX(k) 6= 0. Let k′ be
a Seiberg-Witten basic class of X . The adjunction inequality shows that k′ has zero intersection with
each rim torus, hence the Poincaré dual of k′ has no vanishing surface component. The adjunction
inequality also shows that |k′ ·ΣX | ≤ 2g−2. The formula only makes a statement about the case that
k′ · ΣX = ±(2g − 2). We can restrict to the positive case: Let k denote a characteristic class on X
such that the Poincaré dual PD(k) is of the form

PD(k) = pM + pN +

c∑
i=1

εiRi + (2g − 2)BX + βXΣX ,

with pM ∈ P (M) and pN ∈ P (N). One can show that

H2(M0;Z) ∼= H2(M0, ∂M0;Z) = P (M)⊕ ZB′M ⊕ ker iM
where B′M is the surface BM with a disk deleted and iM denotes the map on H1(Σ;Z) induced
by inclusion. There are obvious restriction maps of H2(X;Z) and H2(M ;Z) to H2(M0;Z), and
similarly for N . It follows that the set of characteristic classes on X which have the same square and
the same restriction to M0 and N0 as k is given by

K(k) = {l ∈ C(X) | PD(l) = PD(k) +R with R ∈ R(X)}.
We also set

KM (k) = {l ∈ C(M) | PD(l) = pM + (2g − 2)BM + βMΣM with βM ∈ Z}
KN (k) = {l ∈ C(N) | PD(l) = pN + (2g − 2)BN + βNΣN with βN ∈ Z}.

Then we get:

Theorem 3 (Morgan-Szabó-Taubes). In the situation above we have∑
k′∈K(k)

SWX(k′) = ±
∑

SWM (l1)SWN (l2),
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where the sum on the right extends over those (l1, l2) ∈ KM (k)×KN (k) with βX = βM + βN + 2.

Note that if M and N are of simple type there is for a given characteristic class k at most one
non-zero summand on the right hand side of the formula; see also [14].

Finally, ifM andN are symplectic and the surfaces ΣM and ΣN symplectically embedded then the
fibre sum X admits a symplectic structure for all gluing diffeomorphisms φ as above [5, 12]. There is
a formula for the canonical class of X that in general depends on the choice of C. Let X0 denote the
fibre sum with C = 0, corresponding to the gluing diffeomorphism that identifies the push-offs of the
surfaces.

Theorem 4. Choose a normal form basis for H2(X;Z) as in Theorem 1. Suppressing Poincaré
duality the canonical class of X is given by

(1) KX = KM +KN +
c∑
i=1

riRi + bXBX + σXΣX ,

where

KM = KM − (2g − 2)BM − (KMBM − (2g − 2)B2
M )ΣM ∈ P (M)

KN = KN − (2g − 2)BN − (KNBN − (2g − 2)B2
N )ΣN ∈ P (N)

ri = KXSi = KX0Si − ai(KNBN + 1− (2g − 2)B2
N )

bX = 2g − 2

σX = KMBM +KNBN + 2− (2g − 2)(B2
M +B2

N ).

In evaluating KX0Si we choose the basis of rim tori in X0 determined by the basis in X and a
corresponding dual basis of vanishing surfaces.

The integers ai are defined as follows: Let α1, . . . , αc denote a basis for the kernel of the homo-
morphism iM ⊕ iN on H1(Σ;Z). Then

ai = 〈C,αi〉.

4. INVARIANTS OF THE ITERATED FIBRE SUMS M(n)

Let M ′ denote an algebraic surface with a Lefschetz pencil and H1(M ′;Z) = 0 and M → CP1

the algebraic Lefschetz fibration on the blow-up with fibre of genus g. Using two copies M1 and M2

of M we see that the homomorphism
iM1 ⊕ iM2

on H1(Σ;Z) maps to zero, hence
H1(M(2);Z) = 0

and by induction
H1(M(n);Z) = 0

for all n ≥ 2. We can also consider a twisted fibre sum

M(m,n,C) = M(m)#Σ=ΣM(n)

defined by a gluing diffeomorphism that is determined by a cohomology class C in H1(Σ;Z). There
is a diffeomorphism

M(m,n, 0) ∼= M(m+ n).

The same argument as above shows that

H1(M(m,n,C);Z) = 0
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for all m,n ≥ 1.
More specifically if M ′ is simply-connected, then the complement of a general fibre in M is also

simply-connected, because the meridian to the surface bounds an embedded disk, coming from one
of the exceptional spheres. Hence all fibre sums M(n) and M(m,n,C) are simply-connected.

The Euler characteristic and signature of the fibre sum X = M(n) are given by

e(X) = ne(M) + (n− 1)(4g − 4)

σ(X) = nσ(M),

and similarly for the twisted fibre sum. To describe the second homology ofM(2) we choose inM for
the surface BM one of the exceptional spheres, which form sections for the fibration. In X = M(2)
these spheres sew together to define a sphere BX of self-intersection −2. According to the second
Lefschetz Hyperplane theorem the vanishing cycles generate the first homology of the general fibre.
By our choice of gluing the corresponding vanishing disks pair up in both summands of the fibre sum
to define a set of vanishing classes given by embedded (−2)-spheres, called vanishing spheres. With
Proposition 2 we get:

Proposition 5. There exists a basis S1, . . . , S2g for the group S′(M(2)) of vanishing surfaces which
are linear combinations of embedded vanishing spheres and rim tori.

Hence the intersection form of X = M(2) looks like

H2(M(2);Z) = P (M1)⊕ P (M2)⊕
2g⊕
i=1

(
S2
i 1

1 0

)
⊕
(
−2 1
1 0

)
.

By induction we get

H2(M(n);Z) =
n⊕
i=1

P (Mi)⊕
2g(n−1)⊕
i=1

(
S2
i 1

1 0

)
⊕
(
−n 1
1 0

)
.

In the induction step we perturb the fibration on M(n − 1) without changing the vanishing cycles
such that the vanishing spheres become disjoint from the singular fibres. The terms in the middle of
the formula are the vanishing surface and dual rim tori pairs. The class BX in M(n) is represented by
a symplectic sphere of self-intersection −n which is a section of the fibration. Note that the second
Betti number has the value expected from the formula for the Euler characteristic. A similar formula
holds for the fibre sums M(m,n,C). However, in this case the vanishing surfaces are in general no
longer linear combinations of vanishing spheres.

We want to determine the canonical class of the symplectic fibre sum M(n).

Theorem 6. The canonical class of X = M(n) is given by

KX =

n∑
i=1

KMi + (2g − 2)BX + ((n− 2) + (2g − 2)n)ΣX ,

where
KMi = (KM + ΣM )− (2g − 2)(BM + ΣM ) ∈ P (Mi)

for all i = 1, . . . , n.

Proof. The proof is by induction using the formula in Theorem 4. We first show that all rim tori
coefficients are zero. This is equivalent to showing that KXSi = 0 for all vanishing classes Si. Note
that the vanishing classes are linear combinations of vanishing spheres and rim tori. Hence we only
have to show that KXV = 0 for all vanishing spheres V and KXT = 0 for all rim tori T . The
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sphere V has a dual rim torus R that intersects it in a single positive transverse point. Smoothing
the intersection between V and the rim torus R we get an embedded torus of square zero. By the
adjunction inequality and since KX is a Seiberg-Witten basic class we have for tori of square zero
KXR = 0 and KX(V +R) = 0, hence KXV = 0. By the same argument KXT = 0.

We first check the case n = 1 of the formula we want to prove. We have:

KX = (KM + ΣM )− (2g − 2)(BM + ΣM )

+ (2g − 2)BM + (−1 + (2g − 2))ΣM

= KM .

Suppose that n ≥ 2 and the formula is correct for n− 1. Write N = M(n− 1) and consider the fibre
sum X = M#ΣM=ΣN

N . The surface BM is an exceptional sphere in M and BN is a symplectic
sphere of self-intersection −(n − 1) from the previous step. Using the adjunction formula we have
KMBM = −1, hence

KM = KM − (2g − 2)BM − (−1 + (2g − 2))ΣM

= (KM + ΣM )− (2g − 2)(BM + ΣM )

= KMn ,

and similarly KNBN = n− 3, hence

KN = KN − (2g − 2)BN − ((n− 3) + (2g − 2)(n− 1))ΣN

=
n−1∑
i=1

KMi + (2g − 2)BN + ((n− 3) + (2g − 2)(n− 1))ΣN

− (2g − 2)BN − ((n− 3) + (2g − 2)(n− 1))ΣN

=

n−1∑
i=1

KMi .

We also have

bX = 2g − 2

σX = −1 + (n− 3) + 2− (2g − 2)(−1− (n− 1))

= (n− 2) + (2g − 2)n.

Adding the terms proves the claim. �

Remark 7. Note that for g = 1 andM equal to the elliptic surface E(1) with general fibre F we have
KM +ΣM = −F +F = 0. Hence we get the well-known formula KX = (n−2)F for the canonical
class of X = E(n).

In the general case we have for the (maximal) divisibility of the canonical class:

Corollary 8. The divisibility of the canonical classKX ofX = M(n) is the greatest common divisor
of n− 2 and the divisibility of the class KM + ΣM ∈ H2(M ;Z).

Proof. The greatest common divisor of n − 2 and the divisibility of KM + ΣM divides KX . This
follows because this number also divides 2g − 2 = (KM + ΣM )ΣM by the adjunction formula. The
number then divides all terms in the formula in Theorem 6.
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Conversely, let δ denote the divisibility ofKX . It is clear that δ divides 2g−2 sinceKXΣX = 2g−2
by the adjunction formula. We have

KXBX = n− 2

since BX is a symplectic sphere of self-intersection −n. This implies that δ divides also n − 2. The
integer δ also has to divide every term KMi . This shows that it divides the class KM + ΣM , proving
the claim. �

Remark 9. Since the complex curve ΣM in the blow-up M = M ′#rCP2 → CP1 is the proper
transform of a curve ΣM ′ inM ′, the divisibility ofKM+ΣM is equal to the divisibility ofKM ′+ΣM ′ .
In fact, both classes are equal because the canonical class and the class of the proper transform are
given by

ΣM = ΣM ′ − E1 − . . .− Er
KM = KM ′ + E1 + . . .+ Er,

where Ei denotes the exceptional spheres.

We can also determine the canonical class of the fibre sum M(m,n,C).

Theorem 10. The canonical class of X = M(m,n,C) is given by

KX =
m+n∑
i=1

KMi +

2g∑
i=1

riRi + (2g − 2)BX + ((m+ n− 2) + (2g − 2)(m+ n))ΣX ,

where
KMi = (KM + ΣM )− (2g − 2)(BM + ΣM ) ∈ P (Mi)

for all i = 1, . . . ,m+ n and
ri = −ai((2g − 1)n− 1)

for the coefficients ai determined by the class C as above for a basis α1, . . . , α2g of H1(Σ;Z).

Proof. The proof follows from the formula in Theorem 4, because X0 = M(m+n), hence KX0Si =
0, and BN is a symplectic sphere of self-intersection −n. �

The following is an immediate consequence which we will use later in deriving an obstruction to
extending diffeomorphisms:

Corollary 11. The divisibility of the canonical classKX ofX = M(m,n,C) is the greatest common
divisor of m+ n− 2, a((2g − 1)n− 1) and the class KM + ΣM , where a denotes the divisibility of
the class C.

Note that the divisibility of the class C is the greatest common divisor of the integers ai. We can
use this corollary for example to determine when the manifold M(m,n,C) is spin.

Remark 12. One can show that the divisibility is also equal to the greatest common divisor of m +
n− 2, a((2g − 1)m− 1) and KM + ΣM , as required by symmetry.

Finally, we determine some of the Seiberg-Witten invariants of the manifolds M(n) in the special
case that M ′ is a minimal surface of general type. Surfaces of general type are algebraic [2]. We have
the following lemma.

Lemma 13. Let M ′ be a smooth minimal surface of general type embedded in some complex projec-
tive space and ΣM ′ a transverse hyperplane section. Then the genus of ΣM ′ is at least two.



ITERATED FIBRE SUMS OF ALGEBRAIC LEFSCHETZ FIBRATIONS 9

Proof. We have Σ2
M ′ = r ≥ 1, where r denotes the degree of M ′. Since M ′ is minimal and of

general type we have KM ′C ≥ 0 for all smooth curves C with equality if and only if C is a rational
(−2)-curve [2]. Hence KM ′ΣM ′ ≥ 1 and the adjunction formula implies that the genus of ΣM ′ is at
least two. �

For simplicity we also assume in the following that b+2 (M ′) > 1. First note that the Poincaré dual of
a basic class ofM(n) has no rim tori component: This follows as before from the adjunction inequality
of Seiberg-Witten theory because the vanishing surfaces are linear combinations of vanishing spheres
and rim tori; see [4] for a similar argument. Hence the right hand side in Theorem 3 has only one
term. It follows from [14] that the intersection of a basic class of M(n) with ΣX is either equal to
±(2g − 2) or zero.

Theorem 14. Suppose that M ′ is a minimal algebraic surface of general type with H1(M ′;Z) = 0
and b+2 > 1. Then the only Seiberg-Witten basic class up to sign of X = M(n) which has non-zero
intersection with the fibre ΣX is the canonical class KX .

Proof. We consider the argument for M(2). The general case follows similarly. By the blow-up
formula for the Seiberg-Witten invariants [3] the basic classes of M = M ′#rCP2 are given by [16]

L = ±(KM ′ ± E1 ± . . .± Er).

Note that on the right hand side of the Morgan-Szabó-Taubes formula only the basic classes on M
with LΣM = 2g − 2 are relevant. Suppose that i exceptional sphere summands in the bracket have
negative sign and r − i positive. We have

2g − 2 = KM ′ΣM ′ + r.

Since M ′ is minimal and of general type and ΣM ′ is a smooth complex curve of non-zero genus we
have KM ′ΣM ′ > 0, which implies i ≤ r < 2g − 2. We get:

|LΣM | = |KM ′ΣM ′ + r − 2i| = |2g − 2− 2i|.

This can be 2g − 2 if and only if i = 0. Hence the relevant basic class of M for the right hand side of
the Morgan-Szabó-Taubes formula is L = KM . We then see that the only basic class of M(2) which
has intersection 2g − 2 with the fibre is the canonical class. �

5. EXTENSION OF DIFFEOMORPHISMS

Suppose that M ′ is a minimal surface of general type with H1(M ′;Z) = 0 and b+2 > 1. Let
M(n) be a fibre sum as above and Σ a general fibre in M(n) with tubular neighbourhood νΣ. The
neighbourhood has a natural framing Σ ×D2 given by the fibration. We are interested in orientation
preserving self-diffeomorphisms ψ of ∂νΣ which preserve the circle fibration and cover the identity.
As before, the diffeomorphism ψ has up to isotopy the form

ψ : Σ× S1 −→ Σ× S1

(x, α) 7→ (x,C(x) · α),

where C : Σ → S1 is a smooth map. The diffeomorphism is determined up to isotopy by the
cohomology class C∗dα ∈ H1(Σ;Z), denoted by C.

We want to derive an obstruction so that ψ does not extend to an orientation preserving self-
diffeomorphism of the complement M(n) \ int νΣ.
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Theorem 15. Let d denote the divisibility of the classKM ′ +ΣM ′ and a the divisibility of the class C.
If d does not divide a(n− 1) then ψ does not extend to an orientation preserving self-diffeomorphism
of the complement M(n) \ int νΣ.

Proof. Suppose that ψ extends to a self-diffeomorphism Ψ of the complement. We can use ψ to form
a twisted fibre sum M(m,n,C) for some integer m ≥ 1. Since ψ extends on the complement there
is an orientation preserving diffeomorphism M(m,n,C) ∼= M(m + n). Let X ′ = M(m,n,C) and
X = M(m+ n). Note that the diffeomorphism is the identity on M(m)0. Hence it maps the surface
ΣX′ in X ′ given by the standard fibre in the boundary of the tubular neighbourhood in M(m) to the
standard fibre ΣX in M(m + n). On the M(n)0 side in X ′ the surface ΣX′ is a twisted copy of the
standard fibre and also gets mapped to the fibre ΣX in X . The canonical class of X ′ has intersection
2g− 2 with the symplectic surface ΣX′ . It has to map to a Seiberg-Witten basic class of X having the
same intersection 2g− 2 with the fibre ΣX , since the surfaces get identified and the canonical class is
basic [15]. There is a unique such basic class, the canonical class of X . It follows that both canonical
classes have to match under the diffeomorphism, in particular they must have the same divisibility.
This will imply that d divides a(n− 1).

The divisibility of the canonical class of X is the greatest common divisor of

m+ n− 2 and d.

The divisibility of the canonical class of X ′ is the greatest common divisor of

m+ n− 2, d and a((2g − 1)n− 1).

If both are the same the greatest common divisor of m+ n− 2 and d must divide a((2g − 1)n− 1).
We can choose for m any positive integer. In particular, we can arrange that the greatest common
divisor of m + n − 2 and d is equal to d. Hence d has to divide a((2g − 1)n − 1). The integer d is
the divisibility of KM ′ + ΣM ′ . The adjunction formula shows that d divides 2g − 2. It follows that d
divides a((2g − 1)n− 1) if and only if it divides a(n− 1). This completes the proof. �

Remark 16. The corresponding statement is true for elliptic surfaces and shows that if a diffeomor-
phism extends over E(n) \ int νΣ then d divides a(n − 1). Note that in the case of E(n) the integer
d is zero, see Remark 7. This implies that we must have either n = 1, and we are in the case of E(1),
or a = 0 and hence C = 0, which is the case of a trivial diffeomorphism that preserves the torus
fibration. Hence we get the same obstruction that is known for elliptic surfaces, see Theorem 8.3.11
in [6].

6. CONSTRUCTION OF SOME EXAMPLES

Let M ′ be a minimal complex surface of general type. Then M ′ is algebraic and an embedding
into some projective space CPN is determined by a very ample line bundle E on M ′. Under such
an embedding, a transverse hyperplane section of M ′ will be a surface ΣM ′ on M ′ representing the
Poincaré dual of c1(E). We want to prove the following:

Proposition 17. For each integer d ≥ 1 there exists an embedding of M ′ into some projective space
CPN such that the class KM ′ + ΣM ′ is divisible by d.

Using this proposition we can construct many Lefschetz fibrations M(n) such that certain diffeo-
morphisms on the boundary of the tubular neighbourhood of a general fibre do not extend over the
complement according to Theorem 15.

We need some preparations: If S is an ample line bundle on M ′, then kS is very ample for all
k ≥ k0 for some integer k0 [11, Theorem 1.2.6]. Let L be an ample line bundle on M ′. We want to
determine when the line bundle of the form S = KM ′ + sL for integers s ≥ 1 is ample.
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Lemma 18. Let L be an ample line bundle on M ′. Then there exists an integer s0 ≥ 1 such that
S = KM ′ + sL is ample for all s ≥ s0.

Proof. According to the Nakai-Moishezon criterion [2, 9] the line bundle S is ample if and only if
S2 > 0 and SC > 0 for every irreducible curve C on M ′. The canonical class of an algebraic surface
of general type satisfies KM ′C ≥ 0 for all irreducible curves C, with equality if and only if C is
a rational (−2)-curve. Since we assumed that L is ample, we have SC > 0 for all integers s ≥ 1
and every curve C. Moreover, since L is ample we also have L2 > 0. Hence the second condition
S2 = K2

M ′ + 2sKM ′L+ s2L2 > 0 will certainly hold if we choose s large enough. In fact, under our
assumptions s ≥ 0 will suffice. �

We can now prove Proposition 17.

Proof. Let S = KM ′ + sL be ample and kS very ample. Then the hyperplane section ΣM ′ under
the embedding determined by kS into a projective space CPN represents the class kKM ′ + ksL. Let
d ≥ 1 be some integer. We want to choose s and k such that the class KM ′ + ΣM ′ is divisible by d.
First choose s such that S = KM ′ + sL is ample and d divides s. Then choose k large enough such
that kS is very ample and d divides k + 1. Then d also divides the class KM ′ + ΣM ′ . �
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2011-016 Höllig, K.; Hörner, J.: Programming Multigrid Methods with B-Splines
2011-015 Ferrario, P.: Nonparametric Local Averaging Estimation of the Local Variance Function
2011-014 Müller, S.; Dippon, J.: k-NN Kernel Estimate for Nonparametric Functional Regression

in Time Series Analysis
2011-013 Knarr, N.; Stroppel, M.: Unitals over composition algebras
2011-012 Knarr, N.; Stroppel, M.: Baer involutions and polarities in Moufang planes of

characteristic two
2011-011 Knarr, N.; Stroppel, M.: Polarities and planar collineations of Moufang planes
2011-010 Jentsch, T.; Moroianu, A.; Semmelmann, U.: Extrinsic hyperspheres in manifolds with

special holonomy
2011-009 Wirth, J.: Asymptotic Behaviour of Solutions to Hyperbolic Partial Differential Equations
2011-008 Stroppel, M.: Orthogonal polar spaces and unitals
2011-007 Nagl, M.: Charakterisierung der Symmetrischen Gruppen durch ihre komplexe

Gruppenalgebra
2011-006 Solanes, G.; Teufel, E.: Horo-tightness and total (absolute) curvatures in hyperbolic

spaces
2011-005 Ginoux, N.; Semmelmann, U.: Imaginary Kählerian Killing spinors I
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