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POLAR ACTIONS ON COMPLEX HYPERBOLIC SPACES

Abstract. We classify polar actions on complex hyperbolic spaces CHn up to orbit equivalence.

1. Introduction and main result

A proper isometric Lie group action on a Riemannian manifold is called polar if there exists an
immersed submanifold that meets every orbit orthogonally. Such a submanifold is then called a
section of the action.

Let CHn = G/K be the complex hyperbolic n-space, whereG = SU(1, n) andK = S(U(1)U(n))
is the isotropy group of G at some point o. Consider the Cartan decomposition g = k ⊕ p with
respect to o. Choose a maximal abelian subspace a of p and let g = g−2α ⊕ g−α ⊕ g0 ⊕ gα ⊕ g2α

be the root space decomposition with respect to a. Set k0 = k ∩ g0
∼= u(n − 1). Since k0 acts on

the root space gα, the center of k0 induces a natural complex structure J on gα which makes it
isomorphic to Cn−1. On the other hand, we call a subset of gα a real subspace of gα if it is a linear
subspace of gα, where gα is viewed as a real vector space. Assume gα is endowed with the inner
product given by the restriction of the Killing form of g. A real subspace w of gα is said to be
totally real if w ⊥ J(w).

In this paper, we prove the following classification result:

Theorem A. For each of the Lie algebras h below, the corresponding connected subgroup of U(1, n)
acts polarly on CHn:

(i) h = q ⊕ so(1, k) ⊂ u(n − k) ⊕ su(1, k), k ∈ {0, . . . , n}, where q is a subalgebra of u(n − k)
such that the corresponding subgroup Q of U(n − k) acts polarly with a totally real section
on Cn−k.

(ii) h = q⊕b⊕w⊕g2α ⊂ su(1, n), where b is a linear subspace of a, w is a real subspace of gα, and
q is a subalgebra of k0 which normalizes w and such that the connected subgroup of SU(1, n)
with Lie algebra q acts polarly with a totally real section on the orthogonal complement of w
in gα.

Conversely, every polar action on CHn is orbit equivalent to one of the actions above.

In case (i) of Theorem A, one orbit of the H-action is a totally geodesic RHk and the other
orbits are contained in the distance tubes around it. In case (ii), if b = a, one H-orbit of minimal
orbit type contains a geodesic line, while if b = 0, any H-orbit of minimal orbit type is contained
in a horosphere.

We would like to remark here that Theorem A actually provides many examples of polar actions
on CHn. Indeed, for every choice of a real subspace w in gα, there is at least one polar action as
described in part (ii) of Theorem A, see Section 3.

The motivation of our work can be tracked down to the work of Dadok [11] who classified
polar representations on Euclidean spaces. Several years later, the interest of classifying polar
and hyperpolar actions on symmetric spaces of compact type is stated in [15] (an isometric action
is said to hyperpolar if it is polar and the section is flat). The classification of polar actions on
compact symmetric spaces of rank one was obtained by Podestà and Thorbergsson [25]. This
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2 POLAR ACTIONS ON COMPLEX HYPERBOLIC SPACES

classification shows that there are examples of polar actions on symmetric spaces of rank one that
are polar but not hyperpolar. Hyperpolar actions on irreducible symmetric spaces of compact
type were classified by the third author in [17]. The lack of examples of polar actions that are not
hyperpolar on irreducible symmetric spaces of compact type and higher rank, led Biliotti [10] to
formulate the following conjecture: a polar action on an irreducible symmetric space of compact
type and higher rank is hyperpolar. The third author answered this question in the affirmative for
symmetric spaces with simple isometry group [18], and for the exceptional simple Lie groups [19].
The final step was given by Kollross and Lytchak [21] who showed that Biliotti’s conjecture can
be answered in the affirmative: a polar action on an irreducible symmetric space of compact
type and rank higher than one is hyperpolar, and hence, the classification follows from [17]. It
is worthwhile to mention that the classification of polar actions on reducible symmetric spaces
cannot be obtained from the corresponding classification in irreducible ones.

While there has been certain progress in the study of polar actions on compact symmetric spaces,
the situation in the noncompact case remains largely open. Wu [30] classified polar actions on real
hyperbolic spaces and showed that, up to orbit equivalence, they are products of a noncompact
factor, which is either the isometry group of a lower dimensional real hyperbolic space or the
nilpotent part of its Iwasawa decomposition, and a compact factor, which comes from the isotropy
representation of a symmetric space. In particular, there are finitely many examples of polar
actions on a real hyperbolic space up to orbit equivalence. Berndt and the first author obtained
in [5] the classification of polar actions on the complex hyperbolic plane CH2, showing that there
are exactly nine examples up to orbit equivalence. No other classification of polar actions was
known on a symmetric space of noncompact type. The aim of this paper is precisely to present
the classification of polar actions on complex hyperbolic spaces of any dimension.

An important fact to bear in mind here is that, in general, duality cannot be applied to derive
classifications of polar actions in noncompact symmetric spaces from the corresponding classifica-
tions in the compact setting. A quick way to see this is the following. It was proved in [25] that
polar actions on irreducible symmetric spaces of compact type always have singular orbits; how-
ever, a horosphere foliation on a real hyperbolic space is polar but does not have singular orbits,
so it cannot be obtained from duality. Nevertheless, there are certain situations where duality can
be used to obtain partial classifications. The first and the third author derived in [13] the classi-
fication of polar actions with a fixed point on symmetric spaces using this method. Remarkably,
it can be shown that a polar action with a fixed point in a reducible symmetric space splits as
a product of polar actions on each factor. The third author explored this idea a bit further and
obtained a classification of polar actions by algebraic reductive subgroups using duality in [20].

Berndt and Tamaru [8] classified cohomogeneity one actions on complex hyperbolic spaces, the
quaternionic hyperbolic plane, and the Cayley hyperbolic plane. Note that in rank one an isometric
action is hyperpolar if and only if it is of cohomogeneity one. The classification remains open in
quaternionic hyperbolic spaces HHn, n ≥ 3, and in symmetric spaces of higher rank. See [9] for
more information on cohomogeneity one actions on symmetric spaces of noncompact type. As
we mentioned earlier, a polar action on a symmetric space of compact type always has singular
orbits. Motivated by this fact Berndt, Tamaru and the first author studied hyperpolar actions on
symmetric spaces that have no singular orbits [7] and obtained a complete classification. It was
also shown in this paper that there are polar actions on symmetric spaces of noncompact type and
rank higher than one that are not hyperpolar unlike in the compact setting. This classification
can be improved in complex hyperbolic spaces, where Berndt and the first author classified polar
homogeneous foliations [6]. The main result of this paper contains [6] and [8] as particular cases.

This paper is organized as follows. In Section 2 we review the basic facts and notations on
complex hyperbolic spaces (§2.1), polar actions (§2.2), and real vector subspaces of complex vector
spaces (§2.3). The results of Subsection 2.3 will be crucial for the rest of the paper. Section 3 is
devoted to present the new examples that appear in Theorem A. We also present here an outline
of the proof of Theorem A. This proof has two main parts depending on whether the group acting
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upon leaves a totally geodesic subspace invariant (Section 4) or is contained in a maximal parabolic
subgroup of SU(1, n) (Section 5). We conclude in Section 6 with the proof of Theorem A.

2. Preliminaries

In this section we introduce the main known results and notation used throughout this paper.
We would like to emphasize the importance of Subsection 2.3, which is pivotal in the construction
and classification of new examples of polar actions on complex hyperbolic spaces.

As a matter of notation, if U1 and U2 are two linear subspaces of a vector space V , then U1⊕U2

denotes their (not necessarily orthogonal) direct sum. We will frequently use the following notation
for the orthogonal complement of a subspace of a real vector space endowed with a scalar product,
namely, by V 	U we denote the orthogonal complement of the linear subspace U in the Euclidean
vector space V .

2.1. The complex hyperbolic space. In this subsection we recall some well-known facts and
notation on the structure of the complex hyperbolic space as a symmetric space. This will be
fundamental for the rest of the work. As usual, Lie algebras are written in gothic letters.

We will denote by CHn the complex hyperbolic space with constant holomorphic sectional
curvature −1. As a symmetric space, CHn is the coset space G/K, where G = SU(1, n), and
K = S(U(1)U(n)) is the isotropy group at some point o ∈ CHn. Let g = k ⊕ p be the Cartan
decomposition of g with respect to o, where p is the orthogonal complement of k in g with respect
to the Killing form B of g. Denote by θ the corresponding Cartan involution, which satisfies
θ|k = id and θ|p = − id. Note that the orthogonal projections onto k and p are 1

2 (1 + θ) and
1
2 (1− θ), respectively. Let ad and Ad be the adjoint maps of g and G, respectively. It turns out
that 〈X,Y 〉 = −B(θX, Y ) defines a positive definite inner product on g satisfying the relation
〈ad(X)Y, Z〉 = −〈Y, ad(θX)Y 〉 for all X, Y , Z ∈ g. Moreover, we can identify p with the tangent
space ToCHn of CHn at the point o.

Since CHn has rank one, any maximal abelian subspace a of p is 1-dimensional. For each linear
functional λ on a, define gλ = {X ∈ g : ad(H)X = λ(H)X for all H ∈ a}. Then a induces the
restricted root space decomposition g = g−2α⊕ g−α⊕ g0⊕ gα⊕ g2α, which is an orthogonal direct
sum with respect to 〈·, ·〉 satisfying [gλ, gµ] = gλ+µ and θgλ = g−λ. Moreover, g0 = k0 ⊕ a, where
k0 = g0 ∩ k ∼= u(n− 1) is the normalizer of a in k. The root space gα has dimension 2n− 2, while
g2α is 1-dimensional, and both are normalized by k0.

Let us define n = gα ⊕ g2α, which is a nilpotent subalgebra of g isomorphic to the (2n − 1)-
dimensional Heisenberg algebra. The corresponding Iwasawa decomposition of g is g = k⊕ a⊕ n.
The connected subgroup of G with Lie algebra a ⊕ n acts simply transitively on CHn. One may
endow AN , and then a ⊕ n, with the left-invariant metric 〈·, ·〉AN and the complex structure
J that make CHn and AN isometric and isomorphic as Kähler manifolds. Then 〈X,Y 〉AN =
〈Xa, Ya〉+ 1

2 〈Xn, Yn〉 for X, Y ∈ a⊕ n; here subscripts mean orthogonal projection. The complex
structure J on a ⊕ n leaves gα invariant, turning gα into an (n − 1)-dimensional complex vector
space Cn−1. Moreover, Ja = g2α.

Let B ∈ a be a unit vector and define Z = JB ∈ g2α. Then 〈B,B〉 = 〈B,B〉AN = 1 and
〈Z,Z〉 = 2〈Z,Z〉AN = 2. The Lie bracket of a⊕ n is given by

[aB + U + xZ, bB + V + yZ] = − b
2
U +

a

2
V +

(
−bx+ ay +

1

2
〈JU, V 〉

)
Z,

where a, b, x, y ∈ R, and U , V ∈ gα. Let us also define pλ = (1 − θ)gλ, the projection onto p of
the restricted root spaces. Then p = a⊕ pα ⊕ p2α. If the complex structure on p is denoted by i,
then we have that 2iB = (1− θ)Z, and i(1− θ)U = (1− θ)JU for every U ∈ gα.

We state now two lemmas that will be used frequently along the article.

Lemma 2.1. We have:

(a) [θX,Z] = −JX for each X ∈ gα.
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(b) 〈T, (1 + θ)[θX, Y ]〉 = 2〈[T,X], Y 〉, for any X, Y ∈ gα and T ∈ k0.

Proof. See [6, Lemma 2.1]. �

Lemma 2.2. The orthogonal projection map 1
2 (1 − θ) : a ⊕ gα ⊕ g2α → a ⊕ pα ⊕ p2α defines an

equivalence between the adjoint K0-representation on a⊕gα⊕g2α and the adjoint K0-representation
on p = a ⊕ pα ⊕ p2α. Moreover, this equivalence is an isometry between (a ⊕ gα ⊕ g2α, 〈·, ·〉AN )
and (p, 〈·, ·〉), and 1

2 (1− θ) : gα → pα is a complex linear map.

Proof. The first part follows from the fact that θ is a K-equivariant, hence K0-equivariant, map
on g. The other claims follow from the facts stated above in this subsection. �

2.2. Polar actions. Let M be a Riemannian manifold and I(M) its isometry group. It is known
that I(M) is a Lie group. Let H be a connected closed subgroup of I(M). The action of H on M
is called polar if there exists an immersed submanifold Σ of M such that:

(1) Σ intersects all the orbits of the H-action, and
(2) for each p ∈ Σ, the tangent space of Σ at p, TpΣ, and the tangent space of the orbit

through p at p, Tp(H · p), are orthogonal.

In such a case, the submanifold Σ is called a section of the H-action. The action of H is called
hyperpolar if the section Σ is flat in its induced Riemannian metric.

Two isometric Lie group actions on two Riemannian manifolds M and N are said to be orbit
equivalent if there is an isometry M → N which maps connected components of orbits onto
connected components of orbits. They are said to be conjugate if there exists an equivariant
isometry M → N .

The final aim of our research is to classify polar actions on a given Riemannian manifold up to
orbit equivalence. In this paper we accomplish this task for complex hyperbolic spaces. See the
survey articles [27] and [28] for more information and references on polar actions.

Since CHn is of rank one, a polar action on CHn is hyperpolar if and only if it is of coho-
mogeneity one, i.e. the orbits of maximal dimension are hypersurfaces. Conversely, any action of
cohomogeneity one on CHn (or any other Riemannian symmetric space) is hyperpolar. Coho-
mogeneity one actions on complex hyperbolic spaces have been classified by Berndt and Tamaru
in [8].

From now on we focus on polar actions on complex hyperbolic spaces and recall or prove some
facts that will be used later in this article. We begin with a criterion that allows us to decide
whether an action is polar or not. The first such criterion of polarity is credited to Gorodski [14].

Proposition 2.3. Let M = G/K be a Riemannian symmetric space of noncompact type, and
let Σ be a connected totally geodesic submanifold of M with o ∈ Σ. Let H be a closed subgroup
of I(M). Then H acts polarly on M with section Σ if and only if ToΣ is a section of the slice
representation of Ho on νo(H · o), and 〈h, ToΣ⊕ [ToΣ, ToΣ]〉 = 0.

In this case, the following conditions are satisfied:

(a) ToΣ⊕ [ho, ξ] = νo(H · o) for each regular normal vector ξ ∈ νo(H · o).
(b) ToΣ⊕ [ho, ToΣ] = νo(H · o).
(c) Ad(Ho)ToΣ = νo(H · o).

Proof. Follows from [5, Corollary 3.2] and from well-known facts on polar representations of com-
pact groups [11]. �

If N is a submanifold of CHn, then N is said to be totally real if for each p ∈ N the tangent
space TpN is a totally real subspace of TpCHn, that is, JTpN is orthogonal to TpN . See §2.3
for more information of totally real subspaces of complex vector spaces. The next theorem shows
that sections are necessarily totally real.

Proposition 2.4. Let H act nontrivially, nontransitively, and polarly on the complex hyperbolic
space CHn, and let Σ be a section of this action. Then, Σ is a totally real submanifold of CHn.
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Proof. Since the action of H is polar, the section Σ is a totally geodesic submanifold of CHn,
hence Σ is either totally real or complex. Assume that Σ is complex.

Since all sections are of the form h(Σ), with h ∈ H, and the isometries of H are holomorphic, it
follows that any principal orbit is almost complex. It is a well-known fact that an almost complex
submanifold in a Kähler manifold is Kähler. Since every H-equivariant normal vector field on
a principal orbit is parallel with respect to the normal connection [3, Corollary 3.2.5], then this
principal orbit is either a point or CHn (see for example [1]), contradiction. Therefore Σ is totally
real. �

2.3. The structure of a real subspace of a complex vector space. Let us denote by J the
complex structure of the complex vector space Cn. We view Cn as a Euclidean vector space with
the scalar product given by the real part of the standard Hermitian scalar product. We define
a real subspace of Cn to be an R-linear subspace of the real vector space obtained from Cn by
restricting the scalars to the real numbers. Let V be a real subspace of Cn. We will denote by πV
the orthogonal projection map onto V .

The Kähler angle of a nonzero vector v ∈ V with respect to V is defined to be the angle between
Jv and V or, equivalently, the value ϕ ∈ [0, π/2] such that 〈πV Jv, πV Jv〉 = cos2(ϕ)〈v, v〉. We say
that V has constant Kähler angle ϕ if the Kähler angle of every nonzero vector v ∈ V with respect
to V is ϕ. In particular, V is a complex subspace if and only if it has constant Kähler angle 0; it
is a totally real subspace if and only if it has constant Kähler angle π/2.

Example 2.5. If {e1, . . . , en} and {f1, . . . , fn} both are orthonormal bases of Cn, then the real
subspace Vϕ of C2n = Cn ⊕ Cn generated by

{cos(ϕ2 )e1 + sin(ϕ2 )Jf1, cos(ϕ2 )Je1 + sin(ϕ2 )f1, . . . , cos(ϕ2 )en + sin(ϕ2 )Jfn, cos(ϕ2 )Jen + sin(ϕ2 )fn}

has constant Kähler angle ϕ ∈ [0, π/2). Conversely, any subspace of constant Kähler angle ϕ ∈
[0, π/2) and dimension 2n of C2n can be constructed in this way, see [2].

For general real subspaces of a complex vector space, we have the following structure result.

Theorem 2.6. Let V be any real subspace of Cn. Then V can be decomposed in a unique way as
an orthogonal sum of subspaces Vi, i = 1, . . . , r, such that:

(a) Each real subspace Vi of Cn has constant Kähler angle ϕi.
(b) CVi ⊥ CVj, for every i 6= j, i, j ∈ {1, . . . , r}.
(c) ϕ1 < ϕ2 < · · · < ϕr.

Proof. The endomorphism P = πV ◦J of V is clearly skew-symmetric, i.e. 〈Pv,w〉 = −〈v, Pw〉 for
every v, w ∈ V . Then, there exists an orthonormal basis of V for which P takes a block diagonal
form with 2 × 2 skew-symmetric matrix blocks, and maybe one zero matrix block. Since P is
skew-symmetric, its nonzero eigenvalues are imaginary. Assume then that the distinct eigenvalues
of P are ±iλ1, . . . ,±iλr (maybe one of them is zero). We can and will further assume that
|λ1| > · · · > |λr|.

Now consider the quadratic form Ψ: V → R defined by Ψ(v) = 〈Pv, Pv〉 = −〈P 2v, v〉 for v ∈ V .
The matrix of this quadratic form Ψ (or of the endomorphism −P 2) with respect to the basis fixed
above is diagonal with entries λ2

1, . . . , λ
2
r. For each i = 1, . . . , r, let Vi be the eigenspace of −P 2

corresponding the eigenvalue λ2
i . Let v ∈ Vi be a unit vector. Then

〈πViJv, πViJv〉 = 〈Pv, πViJv〉 = 〈Pv, Pv〉 = Ψ(v) = λ2
i ,

where in the second and last equalities we have used that Pv ∈ Vi. This means that each subspace
Vi has constant Kähler angle ϕi, where ϕi is the unique value in [0, π2 ] such that λ2

i = cos2(ϕi).
By construction, it is clear that Vi ⊥ Vj and JVi ⊥ JVj for i 6= j. Since for every v ∈ Vi and

w ∈ Vj , i 6= j, we have that 〈Jv,w〉 = 〈Pv,w〉 = 0, we also get that JVi ⊥ Vj if i 6= j. Hence
CVi ⊥ CVj if i 6= j.
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Property (c) follows from the assumption that |λ1| > · · · > |λr|, and this also implies the
uniqueness of the decomposition. �

It is convenient to change the notation of Theorem 2.6 slightly. Let V be any real subspace of Cn,
and let V =

⊕
ϕ∈Φ Vϕ be the decomposition stated in Theorem 2.6, where Vϕ has constant Kähler

angle ϕ ∈ [0, π/2], and Φ is the set of all possible Kähler angles arising in this decomposition. Note
that according to Theorem 2.6, this decomposition is unique up to the order of the factors. We
agree to write Vϕ = 0 if ϕ /∈ Φ. The subspaces V0 and Vπ/2 (which can be zero) play a somewhat
distinguished role in the calculations that follow, so we will denote Φ∗ = {ϕ ∈ Φ : ϕ 6= 0, π/2}.
Then, the above decomposition is written as

V = V0 ⊕

⊕
ϕ∈Φ∗

Vϕ

⊕ Vπ/2.
For each ϕ ∈ Φ∗ ∪ {0}, we define Jϕ : Vϕ → Vϕ by Jϕ = 1

cos(ϕ) (πVϕ ◦ J). This is clearly a

skew-symmetric and orthogonal endomorphism of Vϕ (see the proof of Theorem 2.6). Therefore
(Vϕ, Jϕ) is a complex vector space for every ϕ ∈ Φ∗ ∪{0}. Note that J0 = J |V0

. Let U(Vϕ) be the
group of all unitary transformations of the complex vector space (Vϕ, Jϕ).

Lemma 2.7. Let V be a real subspace of constant Kähler angle ϕ 6= 0 in Cn. Then the real
subspace CV 	 V of Cn has the same dimension as V and constant Kähler angle ϕ.

Proof. See for example [4, page 135]. �

Let V ⊥ = Cn 	 V , where as usual 	 denotes the orthogonal complement. Then, Lemma 2.7
implies that the decomposition stated in Theorem 2.6 can be written as

V ⊥ = V ⊥0 ⊕

⊕
ϕ∈Φ∗

V ⊥ϕ

⊕ V ⊥π/2, where CVϕ = Vϕ ⊕ V ⊥ϕ for each ϕ ∈ Φ∗ ∪ {π/2}.

We define mϕ = dimVϕ and m⊥ϕ = dimV ⊥ϕ . For every ϕ 6= 0 we have mϕ = m⊥ϕ by Lemma 2.7,

but V0 and V ⊥0 are both complex subspaces of Cn, possibly of different dimension.

Lemma 2.8. Let V be a real subspace of Cn. Let U(n)V be the subgroup of U(n) consisting of all
the elements A ∈ U(n) such that AV = V . Then, we have the canonical isomorphism

U(n)V ∼=

 ∏
ϕ∈Φ∗∪{0}

U(Vϕ)

×O(Vπ/2)× U(V ⊥0 ).

where we assume that Vϕ, ϕ ∈ Φ∗ ∪ {0}, is endowed with the complex structure given by Jϕ =
1

cos(ϕ) (πVϕ ◦ J), and that V ⊥0 is endowed with the complex structure given by the restriction of J .

Proof. Let A ∈ U(n) be such that AV = V . Then A commutes with J and πV and hence leaves
the eigenspaces of −P 2 invariant (see the proof of Theorem 2.6). Thus AVϕ = Vϕ. Since we also
have AV ⊥ = V ⊥, it follows that AV ⊥ϕ = V ⊥ϕ .

Let ϕ ∈ Φ∪{0}. Since AVϕ = Vϕ and AV ⊥ϕ = V ⊥ϕ we have ACVϕ = CVϕ. Clearly, A◦πVϕ |Vϕ =
πVϕ ◦ A|Vϕ , and A ◦ πVϕ |Cn	Vϕ = 0 = πVϕ ◦ A|Cn	Vϕ . Hence, A ◦ πVϕ = πVϕ ◦ A. Since AJ = JA
as well, we have that A ◦ Jϕ|Vϕ = Jϕ ◦ A|Vϕ on Vϕ, and thus, A|Vϕ ∈ U(Vϕ). If ϕ = π/2 then
we have AVπ/2 = Vπ/2, and clearly, A|Vπ/2 is an orthogonal transformation of Vπ/2. Moreover, we

have A|V ⊥0 ∈ U(V ⊥0 ). We define a map

F : U(n)V →

 ∏
ϕ∈Φ∗∪{0}

U(Vϕ)

×O(Vπ/2)× U(V ⊥0 )
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by requiring that the projection onto each factor is given by the corresponding restriction, that
is, the U(Vϕ)-projection of F (A) is given by A|Vϕ , the O(Vπ/2)-projection of F (A) is A|Vπ/2 , and

the U(V ⊥0 )-projection of F (A) is A|V ⊥0 .

Since every element in U(n)V leaves the subspaces Vϕ, ϕ ∈ Φ, and V ⊥0 invariant, the map thus
defined is a homomorphism. Let us show injectivity and surjectivity. Let Aϕ ∈ U(Vϕ) for each
ϕ ∈ Φ∗ ∪ {0}, let Aπ/2 ∈ O(Vπ/2), and let A⊥0 ∈ U(V ⊥0 ). If A ∈ U(n)V and v ∈ JVϕ for ϕ ∈ Φ,

then Av is determined by Aϕ and v, since Av = −AJ2v = −JAJv = −JAϕ(Jv). Since we have
the direct sum decomposition

Cn =

⊕
ϕ∈Φ

CVϕ

⊕ V ⊥0 ,

it follows that the unitary map A on Cn is uniquely determined by the maps Aϕ, ϕ ∈ Φ, and A⊥0 .
This shows injectivity.

Conversely, let A ∈
[∏

ϕ∈Φ∗∪{0} U(Vϕ)
]
× O(Vπ/2) × U(V ⊥0 ), and denote by Aϕ the U(Vϕ)-

projection, by Aπ/2 the O(Vπ/2)-projection, and by A⊥0 the U(V ⊥0 )-projection. Then, we may
construct a map A ∈ U(n)V be defining A(v + Jw) = Aϕv + JAϕw for all v, w ∈ Vϕ, ϕ ∈ Φ,
Av = A⊥0 v for v ∈ V ⊥0 , and extending linearly. For the map A thus defined we have A|Vϕ = Aϕ
for ϕ ∈ Φ, and A|V ⊥0 = A⊥0 . This proves surjectivity. �

3. New examples of polar actions

We will now construct new examples of polar actions on complex hyperbolic spaces. We will
use the notation from Subsection 2.1.

Recall that the root space gα is a complex vector space, which we will identify with Cn−1. Let
w be a real subspace of gα and

w =
⊕
ϕ∈Φ

wϕ = w0 ⊕

⊕
ϕ∈Φ∗

wϕ

⊕wπ/2

its decomposition as in Theorem 2.6, where Φ is the set of all possible Kähler angles of vectors in
w, Φ∗ = {ϕ ∈ Φ : ϕ 6= 0, π/2}, and wϕ has constant Kähler angle ϕ ∈ [0, π/2]. Similarly, define
w⊥ = gα 	w and let

w⊥ = w⊥0 ⊕

⊕
ϕ∈Φ∗

w⊥ϕ

⊕w⊥π/2

be the corresponding decomposition as in Theorem 2.6. We define mϕ = dimwϕ and m⊥ϕ =

dimw⊥ϕ , and recall that mϕ = m⊥ϕ if ϕ ∈ (0, π/2]. Recall also that K0, the connected subgroup

of G = SU(1, n) with Lie algebra k0, is isomorphic to U(n − 1) and acts on gα ∼= Cn−1 in the
standard way. We know from Lemma 2.8 that the normalizer NK0

(w) of w in K0 has the form

(1) NK0
(w) ∼=

 ∏
ϕ∈Φ∗∪{0}

U(wϕ)

×O(wπ/2)× U(w⊥0 ).

This group leaves invariant each wϕ and each w⊥ϕ , and acts transitively on the unit sphere of these

subspaces of constant Kähler angle. Moreover, it acts polarly on w⊥, see Remark 3.2 below.
The following result provides a large family of new examples of polar actions on CHn.

Theorem 3.1. Let w be a real subspace of gα and b a subspace of a. Let h = q ⊕ b ⊕ w ⊕ g2α,
where q is any Lie subalgebra of nk0(w) such that the corresponding connected subgroup Q of K
acts polarly on w⊥ with section s. Assume s is a totally real subspace of gα. Then the connected
subgroup H of G with Lie algebra h acts polarly on CHn with section Σ = expo((a	b)⊕ (1−θ)s).
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Proof. We have that ToΣ = (a	 b)⊕ (1− θ)s and νo(H · o) = (a	 b)⊕ (1− θ)w⊥. Since s ⊂ w⊥,
it follows that ToΣ ⊂ νo(H · o). The slice representation of Ho on νo(H · o) leaves the subspaces
a	 b and (1− θ)w⊥ invariant. For the first one the action is trivial, while for the second one the
action is equivalent to the representation of Q on w⊥ (see Lemma 2.2), which is polar with section
s. Hence, the slice representation of Ho on νo(H · o) is polar and ToΣ is a section of it. Let v,
w ∈ s ⊂ w⊥. We have:

[(1− θ)v, (1− θ)w] = (1 + θ)[v, w]− (1 + θ)[θv, w] = −(1 + θ)[θv, w].

The last equality holds because v and w lie in s, which is a totally real subspace of gα, and then
[v, w] = 1

2 〈Jv,w〉Z = 0. Since v, w ∈ gα, then θv ∈ g−α and [θv, w] ∈ g0. Hence −(1 + θ)[θv, w] ∈
k0. Let X = T + aB + U + xZ ∈ h, where T ∈ q, U ∈ w and a, x ∈ R. Since k0 is orthogonal
to a⊕ gα ⊕ g2α, we have:

〈[(1− θ)v, (1− θ)w], X〉 = −〈(1 + θ)[θv, w], T 〉 = −2〈[T, v], w〉 = −4〈[T, v], w〉AN = 0,

where in the last equality we have used that the action of Q on w⊥ is a polar representation with
section s. If b = a, the result then follows using the criterion in Proposition 2.3.

If b 6= a then b = 0. In this case, let v ∈ s and X = T + U + xZ ∈ h, where T ∈ q, U ∈ w,
x ∈ R. Then:

〈[B, (1− θ)v], X〉 = 〈(1 + θ)[B, v], X〉 =
1

2
〈(1 + θ)v, U〉 = 0.

Since [B,B] = 0, by linearity and the skew-symmetry of the Lie bracket, it follows that 〈[ToΣ, ToΣ], h〉 =
0. Again by Proposition 2.3, the result follows also in case b 6= a. �

Remark 3.2. In the special case Q = NK0
(w), we obtain a polar action on CHn, since the whole

normalizer NK0(w) acts polarly on w⊥. Indeed, let sϕ be any one-dimensional subspace of w⊥ϕ
if w⊥ϕ 6= 0, and define s =

⊕
ϕ∈Φ∪{0} sϕ. Then s is a section of the action of NK0

(w) on w⊥.

The cohomogeneity one examples introduced in [2] correspond to the case where w⊥ has constant
Kähler angle, b = a and Q = NK0

(w).

Remark 3.3. It is straightforward to describe all polar actions of closed subgroups Q in Theo-
rem 3.1 up to orbit equivalence. In fact, the action of the group NK0

(w) is given by the products
of the natural representations of the direct factors in (1) on the spaces w⊥ϕ . By the main result of
Dadok [11], a representation is polar if and only if it is orbit equivalent to the isotropy represen-
tation of some Riemannian symmetric space. Therefore, we obtain a representative for each orbit
equivalence class of polar actions on w⊥ given by closed subgroups of NK0(w) in the following
manner. Given w, for each ϕ ∈ Φ ∪ {0} choose a Riemannian symmetric space Mϕ such that
dimMϕ = dimw⊥ϕ . In case π/2 ∈ Φ, choose the symmetric spaces such that all of them except
possibly Mπ/2 are Hermitian symmetric; in case π/2 /∈ Φ, choose all these symmetric spaces to be
Hermitian without exception. Then the isotropy representation of

∏
ϕ∈Φ∪{0}Mϕ defines a closed

subgroup of NK0
(w), which acts polarly on w⊥ with a section s, which is a totally real subspace

of gα, see [25]. This construction exhausts all orbit equivalent classes of closed subgroups in K0

leaving w invariant and acting polarly on w⊥ with totally real section.

Remark 3.4. There is a curious relation between some of the new examples of polar actions in
Theorem 3.1 and certain isoparametric hypersurfaces constructed by the first two authors in [12].
The orbit H ·o of any of the polar actions described in Theorem 3.1 with b = a is always a minimal
(even austere) submanifold of CHn that satisfies the following property: the distance tubes around
it are isoparametric hypersurfaces which are hence foliated by orbits of the H-action. Moreover,
these hypersurfaces have constant principal curvatures if and only if they are homogeneous (i.e.
they are the principal orbits of the cohomogeneity one action resulting from choosing q = nk0(w)
in Theorem 3.1); this happens precisely when the real subspace w⊥ of gα has constant Kähler
angle. See [12] for more details.
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The rest of the paper will be devoted to the proof of the classification result stated in Theorem A.
In order to justify the content of the following sections, we will give here a sketch of the proof of
Theorem A, and leave the details for the following sections.

Assume that H is a closed subgroup of SU(1, n) that acts polarly on CHn. Any subgroup of
SU(1, n) is contained in a maximal proper subgroup L of SU(1, n). We will see that each maximal
subgroup of SU(1, n) either leaves a totally geodesic proper subspace of CHn invariant or it is a
parabolic subgroup. In the first case, L leaves invariant a lower dimensional complex hyperbolic
space CHk, k ∈ {0, . . . , n− 1}, or a real hyperbolic space RHn. The first possibility is tackled in
Subsection 4.1, and it follows from this part of the paper that, roughly, the action of H splits, up
to orbit equivalence, as the product of a polar action on the totally geodesic CHk, and a polar
action with a fixed point on its normal space. Hence, the problem is reduced to the classification
of polar actions on lower dimensional complex hyperbolic spaces, which will allow us to use an
induction argument. The second possibility is addressed in Subsection 4.2 where we show that
the action of H is orbit equivalent to the action of SO(1, n), which is a cohomogeneity one action
whose orbits are tubes around a totally geodesic RHn. If the group L is parabolic, then its Lie
algebra is of the form l = k0⊕a⊕gα⊕g2α, for some root space decomposition of su(1, n) (see §2.1).
We show in Section 5 that the Lie algebra of H (up to orbit equivalence) must be of the form
q ⊕ b ⊕ w ⊕ g2α, with q ⊂ k0, b ⊂ a, and w ⊂ gα, or of the form q ⊕ a, with q ⊂ k0. A bit more
work leads us to the examples described in Theorem 3.1. Combining the different cases, we will
conclude in Section 6 the proof of Theorem A.

4. Actions leaving a totally geodesic subspace invariant

The results in this section show that in order to classify polar actions leaving a totally geodesic
complex hyperbolic subspace invariant it suffices to study polar actions on the complex hyperbolic
spaces of lower dimensions. We will also show that actions leaving a totally geodesic RHn invariant
are orbit equivalent to the cohomogeneity one action of SO(1, n). Note that if an isometric action
leaves a totally geodesic RHk invariant, it also leaves a totally geodesic CHk invariant.

The following is well-known. Let H be closed connected subgroup of SU(1, n). If the natural
action of H on CHn leaves a totally geodesic proper submanifold of CHn invariant, then there is
an element g ∈ SU(1, n) such that gHg−1 is contained in one of the subgroups S(U(1, k)U(n−k))
or SO(1, n) of SU(1, n).

4.1. Actions leaving a totally geodesic complex hyperbolic space invariant. Let L =
S(U(1, k)U(n− k)) ⊂ G = SU(1, n). Let M1 be the totally geodesic CHk given by the orbit L · o.
Let M2 be the totally geodesic CHn−k which is the image of the normal space νoM1 under the
Riemannian exponential map expo. Let H be a closed connected subgroup of L. Then the H-
action on CHn leaves M1 invariant and the H-action on CHn restricted to the isotropy subgroup
Ho leaves M2 invariant. Let π1 : L→ U(1, k) and π2 : L→ U(n− k) be the natural projections.

Theorem 4.1. Assume the H-action on CHn is nontrivial. Then it is polar if and only if the
following hold.

(i) The action of H on M1 is polar and nontrivial.
(ii) The action of Ho on M2 is polar and nontrivial.

(iii) The action of π1(H)× π2(Ho) on CHn is orbit equivalent to the H-action.

Proof. Assume first that the H-action on CHn is polar and Σ is a section. Let Σi be the connected
component of Σ ∩ Mi containing o for i = 1, 2. Obviously, the H-orbits on M1 intersect Σ1

orthogonally. Let p be an arbitrary point in M1. Then the intersection of the orbit H · p with Σ
is non-empty. Let q ∈ (H · p) ∩ Σ. Since H leaves M1 invariant, we have that q ∈ M1. Both
the Riemannian exponential maps of M1 and of Σ at the point o are diffeomorphisms by the
Cartan-Hadamard theorem. Hence there is a unique shortest geodesic segment β in Σ connecting
o with q and there is also a unique shortest geodesic segment γ in M1 connecting o with q. Since
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both Σ and M1 are totally geodesic submanifolds of CHn it follows that β and γ are both also
totally geodesic segments of CHn connecting the points o and q and must coincide by the Cartan-
Hadamard theorem. Hence β = γ both lie in Σ1. This shows that Σ1 meets the H-orbit through p
(namely, at the point q) and completes the proof that (i) holds.

Obviously, the Ho-orbits on M2 intersect Σ2 orthogonally. Since ToM2 is a submodule of the
slice representation ofHo on νo(H ·o), the linearHo-action on ToM2 is polar with section ToΣ2. The
map expo : ToM2 → M2 is an Ho-equivariant diffeomorphism by the Cartan-Hadamard theorem.
In particular, it follows that Σ2 meets all Ho-orbits in M2, since ToΣ2 meets all Ho-orbits in ToM2.
Thus (ii) holds.

Consider the polar slice representation of Ho at ToCHn with section ToΣ. By [11, Theorem 4],
it follows that ToΣ = ToΣ1 ⊕ ToΣ2. Since H ⊂ π1(H)× π2(H), it follows that the actions of the
two groups on CHn are orbit equivalent.

Now let us prove the other direction of the equivalence. Assume H ⊂ L is a closed subgroup
such that (i), (ii) and (iii) hold. Because of (iii) we may replace H by π1(H) × π2(H). Let
Σ1 be the section of the H-action on M1 and let Σ2 be the section of H-action on M2. Then by
Proposition 2.4, the tangent spaces ToΣ1 and ToΣ2 are totally real subspaces of ToCHn; moreover,
CToΣ1 ⊥ CToΣ2. Thus the sum ToΣ1 ⊕ ToΣ2 is totally real Lie triple system in ToCHn. Let Σ
be the corresponding totally geodesic submanifold.

Using Proposition 2.3, we will show that the H-action on CHn is polar and Σ is a section.
Consider the Cartan decomposition g = k⊕p with respect to o ∈ CHn. We have p = ToM1⊕ToM2.
Furthermore, the direct sum decomposition

(2) νo(H · o) = (νo(H · o) ∩ ToM1)⊕ ToM2

holds. The slice representation of the H-action on M1 at the point o is orbit equivalent to the
submodule νo(H · o) ∩ ToM1 of the slice representation of the H-action on CHn at o. The slice
representation of the Ho-action on M2 at the point o is orbit equivalent to the submodule ToM2

of the slice representation of the H-action on CHn at o. By [11, Theorem 4], we conclude that
the slice representation of Ho on νo(H · o) is polar and a section is ToΣ = ToΣ1 ⊕ ToΣ2. We have
to show 〈[v, w], X〉 = −B([v, w], θ(X)) = 0 for all v, w ∈ ToΣ ⊂ p and all X ∈ h. We may identify
the tangent space ToCHn = p with the space of complex (n+ 1)× (n+ 1)-matrices of the form

(3)


0 z̄1 . . . z̄n
z1 0 . . . 0
...

...
...

zn 0 . . . 0

 .

The subspace ToM1 is given by the matrices where zk+1 = . . . = zn = 0. On the other hand,
ToM2 consists of those matrices where z1 = . . . = zk = 0. Let v, w ∈ ToΣ1. Then [v, w] is a
matrix all of whose non-zero entries are located in the (k + 1) × (k + 1)-submatrix in the upper
left-hand corner, and it follows from (i) and Proposition 2.3 that all vectors in h are orthogonal
to [v, w]. Now assume v, w ∈ ToΣ2. Then [v, w] is a matrix all of whose non-zero entries are
located in the (n − k) × (n − k)-submatrix in the bottom right-hand corner. It follows from (ii)
and Proposition 2.3 that all vectors in h are orthogonal to [v, w]. Finally assume v ∈ ToΣ1 and
w ∈ ToΣ2. In this case, the bracket [v, w] is contained in the orthogonal complement of the Lie
algebra of L in su(1, n); in particular, [v, w] is orthogonal to h. We conclude that the H-action on
CHn is polar by Proposition 2.3. �

4.2. Actions leaving a totally geodesic real hyperbolic space invariant. Now we assume
that the polar action leaves a totally geodesic RHn invariant. We have:

Theorem 4.2. Assume that H is a closed subgroup of SO(1, n) ⊂ SU(1, n). If the H-action
on CHn is polar and nontrivial, then it is orbit equivalent to the SO(1, n)-action on CHn; in
particular, it is of cohomogeneity one.
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Proof. This proof is divided in three steps.

Claim 1. The group H induces a homogeneous polar foliation on the totally geodesic submanifold
RHn given by the SO(1, n)-orbit through o.

Let M1 be the totally geodesic RHn given by the SO(1, n)-orbit through o. Obviously, the
H-action leaves M1 invariant. Assume the H-action on M1 has a singular orbit H · p, where p =
g(o) ∈M1. Consider the action of H ′ on CHn, where H ′ is the conjugate subgroup H ′ = gHg−1

of SU(1, n). The action of H ′ is conjugate to the H-action on CHn, hence polar. We have the
splitting (2) for the normal space of the H ′-orbit through o as in the proof of Lemma 4.1, where
in this case M2 is the totally geodesic RHn such that ToM2 = i(ToM1). Since o is a singular orbit
of the H ′-action on M1, the slice representation of H ′o on V = νo(H

′ · o)∩ToM1 is nontrivial. The
space ToM1 consists of all matrices in (3) where the entries z1, . . . , zn are real. Consequently, the
space iV is contained in the normal space νo(H

′ · o) and it follows that the slice representation
of H ′o with respect to the H ′-action on CHn contains the submodule V ⊕ iV with two equivalent
nontrivial H ′o-representations and is hence non-polar by [17, Lemma 2.9], a contradiction. Hence
the H-action on M1 does not have singular orbits, i.e. H induces a homogeneous foliation on M1.

Claim 2. The homogeneous polar foliation induced on the invariant totally geodesic real hyperbolic
space consists of only one leaf or all the leaves are points.

Consider the point o ∈M1 as in the proof of Claim 1. The tangent space of M1 at o splits as

ToM1 = To(H · o)⊕ (νo(H · o) ∩ ToM1).

The action of the isotropy group Ho on ToM1 respects this splitting. Moreover, the action is
trivial on V = νo(H · o) ∩ ToM1, as this is a submodule of the slice representation at o, which
lies in a principal orbit of the H-action on M1. It follows that the action of Ho on iV is trivial
as well and the only possibly nontrivial submodule of the slice representation at o is iW , where
we define W = To(H · o). It follows that the action of the isotropy group Ho on iW is polar by
Proposition 2.3. Let Σ′ be a section of this action. Let Σ be a section of the H-action on CHn.
Then we have

ToΣ = V ⊕ iV ⊕ Σ′.

By Proposition 2.4, Σ is either totally real or Σ = CHn. In the first case, V must be 0, so the
action of H on M1 is transitive. In the second case, the action of H on CHn is trivial.

Claim 3. The H-action on CHn is orbit equivalent to the SO(1, n) action.

Assume the H-action is nontrivial and polar with section Σ. We will use the notation of
Subsection 2.1. By Claim 2, H acts transitively on M1 = RHn. By Lemma 2.2, the tangent space
To(H · o) = ToM1 coincides with a ⊕ (1 − θ)gRα, where gRα is a totally real subspace of the root
space gα satisfying CgRα = gα. Moreover νoM1 = i(ToM1). The action of the isotropy subgroup
Ho = H ∩K on νoM1 by the slice representation is polar with section ToΣ. Since iB ∈ νoM1, by
conjugating the section with a suitable element in Ho we can then assume that iB ∈ ToΣ.

According to [7, Proposition 2.2], the group H contains a solvable subgroup S which acts
transitively on M1 = RHn. Since S is solvable, it is contained in a Borel subgroup of SO(1, n).
As shown in the proof of [6, Proposition 4.2], we may assume that the Lie algebra of such a Borel
subgroup is maximally noncompact, i.e. its Lie algebra is t⊕a⊕gRα, where t is an abelian subalgebra
of k ∩ so(n) such that t ⊕ a is a Cartan subalgebra of so(1, n), see [23]. Note that the Cartan
decomposition of so(1, n) with respect to the point o ∈M1 = RHn is so(1, n) = (k∩ so(1, n))⊕pR,
where pR = a⊕ (1− θ)gRα ∼= ToM1, and gRα is the only positive root space of so(1, n) with respect
to the maximal abelian subalgebra a of pR, for a fixed order in the roots.

Now assume the H-action on CHn is not of cohomogeneity one. Then ToΣ ⊂ νoM1 is a Lie
triple system containing iB and a nonzero vector iw such that iB, iw ∈ p are orthogonal. By
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Lemma 2.2, there is a vector W ∈ gRα such that w = (1 − θ)W . Then, using Lemma 2.1(a), we
have

[iB, iw] =
1

2
[(1− θ)Z, (1− θ)JW ] =

1

2
(1 + θ)[θJW,Z] =

1

2
(1 + θ)W.

Since To(S · o) = ToM1, it follows that the orthogonal projection of the Lie algebra of S onto p is
pR = a⊕ (1− θ)gRα. This implies that a⊕ gRα is contained in the Lie algebra of S, and hence, also
in h. But then W ∈ h and

〈[iB, iw],W 〉 =
1

2
〈(1 + θ)W,W 〉 =

1

2
〈W,W 〉 6= 0,

so we have arrived at a contradiction with the criterion for polarity in Proposition 2.3. �

5. The parabolic case

As above, let G = SU(1, n) be the identity connected component of the isometry group of
CHn, and K = S(U(1)U(n)) the isotropy group at some point o. Let g = k ⊕ p be the Cartan
decomposition of the Lie algebra of G with respect to o, and choose a maximal abelian subspace
a of p. As usual we consider n = gα ⊕ g2α, where α is a simple positive restricted root. The
normalizer of n in k is denoted by k0. Then k0 ⊕ a ⊕ n is a maximal parabolic subalgebra, and a
maximal parabolic subgroup can be written as the semi-direct product K0AN .

The aim of this section is to prove the following decomposition theorem.

Theorem 5.1. Let H be a connected closed subgroup of K0AN acting polarly and nontrivially on
CHn. Then the action of H is orbit equivalent to the action of a subgroup of K0AN whose Lie
algebra can be written as one of the following:

(a) q⊕ a, where q is a subalgebra of k0.
(b) q⊕ a⊕w⊕ g2α, where w is a subspace of gα, and q is a subalgebra of k0.
(c) q⊕w⊕ g2α, where w is a subspace of gα, and q is a subalgebra of k0.

Let Q be a maximal compact subgroup of H. Any two maximal compact subgroups of a
connected Lie group H are connected and conjugate by an element of H [24, p. 148–149]. By
Cartan’s fixed point theorem, Q fixes a point p ∈ CHn, and hence Q = Hp, the isotropy group of
H at p. Since AN acts simply transitively on CHn, we can take the unique element g in AN such
that g(o) = p, and consider the group H ′ = Ig−1(H) = g−1Hg, whose action on CHn is conjugate
to the one of H. Moreover, Q′ = Ig−1(Q) = g−1Qg fixes the point o. Since a ⊕ n normalizes
k0⊕a⊕n, we get that AN normalizes k0⊕a⊕n. In particular, Ad(g−1)h ⊂ k0⊕a⊕n and therefore
H ′ ⊂ K0AN . Since we are interested in the study of polar actions up to orbit equivalence, it is
not restrictive to assume that the group H ⊂ K0AN acting polarly on CHn admits a maximal
connected compact subgroup Q that fixes the point o, and hence Q ⊂ K0. We will assume this
from now on in this section.

As a matter of notation, given two subspaces m, l, and a vector v of g, by ml (resp. by vl) we
will denote the orthogonal projection of m (resp. of v) onto l.

The crucial part of the proof of Theorem 5.1 is contained in the following assertion:

Proposition 5.2. Let H be a connected closed subgroup of K0AN acting polarly on CHn. Let Q
be a maximal subgroup of H that fixes the point o ∈ CHn. Let b be a subspace of a, w a subspace
of gα, and r a subspace of g2α. Assume that ĥ = q⊕ b⊕w⊕ r is a subalgebra of k0 ⊕ a⊕ n, and
let Ĥ be the connected subgroup of K0AN whose Lie algebra is ĥ. If ha⊕n = b ⊕ w ⊕ r, then the

actions of H and Ĥ are orbit equivalent.

The proof of Proposition 5.2 is carried out in several steps. We start with a few basic remarks.
Since a and g2α are one dimensional, b is either 0 or a, and r is either 0 or g2α. Moreover, if

r = 0 then w has to be a totally real subspace of the complex vector space gα ∼= Cn−1, so that ĥ
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is a Lie subalgebra. Using the properties of the root space decomposition, it is then easy to check
that ĥ = q⊕ b⊕w⊕ r is a subalgebra of k0 ⊕ a⊕ n if and only if [q,w] ⊂ w.

Let Σ be a section of the action of H on CHn through o ∈ CHn, and let ToΣ be its tangent
space at o. The normal space of the orbit through the origin is νo(H · o) = (a 	 b) ⊕ (pα 	 (1 −
θ)w)⊕ (p2α 	 (1− θ)r). Since [k0, a] = [k0, g2α] = 0, [k0, gα] = gα, and νo(H · o) = ToΣ⊕ [q, ToΣ]
(orthogonal direct sum of vector subspaces) by Proposition 2.3, it follows that a 	 b ⊂ ToΣ and
p2α 	 (1 − θ)r ⊂ ToΣ. Moreover, since sections are totally real by Proposition 2.4, we can write
the tangent space at o of any section as ToΣ = (a	 b)⊕ (1− θ)s⊕ (p2α 	 (1− θ)r), where s is a
totally real subspace of gα, with s ⊂ gα 	 w. Furthermore, the fact that ToΣ is totally real, and
ia = p2α (where i is the complex structure on p), implies that a	 b = 0 or p2α 	 (1− θ)r = 0, or
equivalently, b = a or r = g2α (that is, a ⊂ ha⊕n or g2α ⊂ ha⊕n).

Let T + aB + U + xZ be an arbitrary element of h, with T ∈ hk0 , U ∈ w, and a, x ∈ R.
Let ξ, η be arbitrary vectors of s. By Proposition 2.3, and since s is totally real, we have, using
Lemma 2.1(b):

0 = 〈T + aB + U + xZ, [(1− θ)ξ, (1− θ)η]〉 = −〈T, (1 + θ)[θξ, η]〉 = −2〈[T, ξ], η〉,
from where it follows that [hk0 , s] ⊂ gα 	 s.

Moreover, if T ∈ q and SU ∈ hk0 , U ∈ w are such that SU + U ∈ h, then [T, SU ] + [T,U ] =
[T, SU + U ] ∈ h, so [T,U ] ∈ w. In particular, if ξ ∈ s, then 0 = 〈[T,U ], ξ〉 = −〈[T, ξ], U〉, which
proves [q, s] ⊂ gα 	 (w⊕ s).

Summarizing what we have obtained about sections we can state:

Lemma 5.3. If Σ is a section of the action of H on CHn through o, then

ToΣ = (a	 b)⊕ (1− θ)s⊕ (p2α 	 (1− θ)r),
where s ⊂ gα	w is a totally real subspace of gα, and b = a or r = g2α. Moreover, [hk0 , s] ⊂ gα	s,
and [q, s] ⊂ gα 	 (w⊕ s).

We will need to calculate the isotropy group at certain points.

Lemma 5.4. Let ξ ∈ gα and write g = Exp(λξ), with λ ∈ R. Then, the Lie algebra of the isotropy
group Hp of H at p = g(o) is hp = h ∩Ad(g)k = q ∩ ker ad(ξ).

Proof. First notice that h ∩ Ad(g)k is the Lie algebra of Hp = H ∩ Ig(K). Let v be the unique
element in p = ToCHn such that expo(v) = p. We show that the isotropy group Hp coincides with
the isotropy group of the slice representation of Q at v, Qv. By [29, §2] we know that the normal
exponential map exp: ν(H · o) → CHn is an H-equivariant diffeomorphism. Let h ∈ Hp. Since
expo(v) = p = h(p) = h expo(v) = exph(o)(h∗ov), we get that h(o) = o and h∗ov = v, and hence,
h ∈ Qv. The H-equivariance of exp also shows the converse inclusion. Therefore Hp = Qv.

We can write v = aB+ b(1− θ)ξ for certain a, b ∈ R. In fact, Exp(λξ)(o) belongs to the totally
geodesic RH2 given by expo(a⊕R(1−θ)ξ), and b 6= 0 if λξ 6= 0. Then, the Lie algebra of Hp = Qv
is {T ∈ q : [T, aB + b(1− θ)ξ] = 0} = {T ∈ q : [T, ξ] = 0}, which is q ∩ ker ad(ξ). �

By definition, we say that a vector ξ ∈ s is regular if [q, ξ] = gα 	 (w⊕ s). We have

Lemma 5.5. The set {ξ ∈ s : ξ is regular} is an open dense subset of s.

Proof. An element of ToΣ can be written, according to Lemma 5.3, as v = aB+(1−θ)ξ+x(1−θ)Z
where a, x ∈ R, and ξ ∈ s. We have [q, v] = (1−θ)[q, ξ] and νo(H ·o)	ToΣ = (1−θ)(gα	(w⊕s)).
An element of ToΣ is regular (that is, belongs to a principal orbit of the slice representation
Q × νo(H · o) → νo(H · o)) if and only if [q, v] = νo(H · o) 	 ToΣ. The previous equalities,
and the fact that (1 − θ) : gα → pα is an isomorphism implies that v is regular if and only if
[q, ξ] = gα 	 (w ⊕ s). Since the set of regular points of a section is open and dense, the result
follows. �

Lemma 5.6. For each regular vector ξ ∈ s we have [hk0 , ξ] = gα 	 (w⊕ s).
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Proof. Let ξ ∈ s be a regular vector, that is, [q, ξ] = gα 	 (w ⊕ s). In order to prove the lemma,
it is enough to show that [hk0 , ξ] ⊂ gα 	w, since q ⊂ hk0 and, by Lemma 5.3, [hk0 , ξ] ⊂ gα 	 s.

First, consider the case r = 0. By Lemma 5.3, ToΣ = (1 − θ)s ⊕ R(1 − θ)Z for each section Σ
through o, where s is some totally real subspace of gα. By Proposition 2.3 we have νo(H · o) =
Ad(Q)(ToΣ) and, thus, for any η ∈ gα 	 w we can find a section Σ through o such that η ∈ s
by conjugating by a suitable element in Q. Then using Lemma 2.1, we have that (1 + θ)Jη =
[(1− θ)η, (1− θ)Z] ∈ [ToΣ, ToΣ]. Let W ∈ w and TW ∈ hk0 be such that TW + W ∈ h. Since by
Proposition 2.3 we have 〈h, [ToΣ, ToΣ]〉 = 0, then 0 = 〈TW + W, (1 + θ)Jη〉 = 〈W,Jη〉. We have
then shown that J(gα 	w) is orthogonal to w, that is, gα 	w is a complex subspace of gα. Since
w is totally real, we deduce w = 0. But then [hk0 , ξ] ⊂ gα 	w holds trivially.

For the rest of the proof, we assume that r = g2α.
Let TB ∈ hk0 and a ∈ R such that TB + aB ∈ h. Note that, if b = 0, then a = 0, TB ∈ q

and there is nothing to prove. For each U ∈ w take an SU ∈ hk0 with SU + U ∈ h. Then
[TB , SU ] + [TB , U ] + a

2U = [TB + aB, SU + U ] ∈ h, so [TB , U ] + a
2U ∈ w, from where [TB , U ] ∈ w.

Hence, 〈[TB , ξ], U〉 = −〈ξ, [TB , U ]〉 = 0, so we get [TB , ξ] ⊂ gα 	w.
Now let TZ ∈ hk0 and x ∈ Z with TZ + xZ ∈ h. For each U ∈ w take an SU ∈ hk0 with

SU + U ∈ h. Then [TZ , SU ] + [TZ , U ] = [TZ + Z, SU + U ] ∈ h, so [TZ , U ] ∈ w. As above, we
conclude [TZ , ξ] ⊂ gα 	w.

Finally, we have to prove that for each U ∈ w, if TU ∈ hk0 is such that TU + U ∈ h, then
[TU , ξ] ∈ gα 	w. This will require some effort.

Let U ∈ w and TU ∈ hk0 with TU +U ∈ h. By Lemma 5.3, [TU , ξ] ∈ gα	s = w⊕ (gα	 (w⊕s)).
Since [q, ξ] = gα 	 (w⊕ s), we can find an S ∈ q so that [TU + S, ξ] ∈ w. Therefore we can define
the map

Fξ : w→ w, U 7→ [TU , ξ], where TU ∈ hk0 , TU + U ∈ h, and [TU , ξ] ∈ w.

The map Fξ is well-defined. Indeed, if TU , SU ∈ hk0 , U ∈ w, TU + U , SU + U ∈ h, and
[TU , ξ], [SU , ξ] ∈ w, then TU − SU ∈ q, so [TU , ξ] − [SU , ξ] = [TU − SU , ξ] ∈ gα 	 (w ⊕ s), and
[TU , ξ]− [SU , ξ] ∈ w. Hence [TU , ξ] = [SU , ξ]. It is also easy to check that Fξ is linear.

Furthermore, Fξ is self-adjoint. To see this, let TU , SV ∈ hk0 , U , V ∈ w, with TU + U ,
SV + V ∈ h, and [TU , ξ], [SV , ξ] ∈ w. Then we have

0 = 〈[TU + U, SV + V ], ξ〉 = 〈[TU , V ], ξ〉 − 〈[SV , U ], ξ〉 = −〈V, [TU , ξ]〉+ 〈U, [SV , ξ]〉
= −〈Fξ(U), V 〉+ 〈Fξ(V ), U〉.

Assume now that Fξ 6= 0. Then Fξ admits an eigenvector U ∈ w with nonzero eigenvalue
λ ∈ R: Fξ(U) = λU 6= 0. We will get a contradiction with this.

Let g = Exp(− 1
λξ), and consider TU ∈ hk0 such that TU + U ∈ h and Fξ(U) = [TU , ξ] = λU .

We also consider an element S ∈ hk0 such that S + Z ∈ h and [S, ξ] = 0; this is possible because
[S, ξ] ∈ gα 	 (w⊕ s) = [q, ξ] and q ⊂ h. If we define R = TU − 1

4λ 〈Jξ, U〉S ∈ hk0 , then we have

Ad(g)R = e−
1
λ ad(ξ)R = TU −

1

λ
[ξ, TU ] +

1

2λ2
[ξ, [ξ, TU ]]− 1

4λ
〈Jξ, U〉S

= (TU + U)− 1

4λ
〈Jξ, U〉(S + Z) ∈ h ∩Ad(g)(k).

However, Ad(g)R 6∈ q ∩ ker ad(ξ). By virtue of Lemma 5.4, this gives a contradiction. Thus we
must have Fξ = 0, from where the result follows. �

Lemma 5.7. The subspace hk0 is a subalgebra of k0 and [hk0 ,w] ⊂ w.

Proof. If T + aB +U + xZ, S + bB + V + yZ ∈ h, with T , S ∈ hk0 , U , V ∈ w, and a, b, x, y ∈ R,
then the bracket [T + aB + U + xZ, S + bB + V + yZ] = [T, S] + [T, V ] − [S,U ] + a

2V −
b
2U +(

1
2 〈JU, V 〉+ ay − bx

)
Z belongs to h. In particular [T, S] ∈ hk0 , so hk0 is a Lie subalgebra of k0.

Taking U = 0, a = b = x = y = 0 we obtain that [q,w] ⊂ w and hence [q, gα 	w] ⊂ gα 	w.
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Now let X ∈ gα 	 w. For any section through o we have Ad(Q)(ToΣ) = ν0(H · o) = (a 	
b) ⊕ (1 − θ)(gα 	 w) ⊕ (1 − θ)(g2α 	 r), and (a 	 b) ⊕ (1 − θ)(gα 	 r) ⊂ ToΣ by Lemma 5.3.
Hence, for (1 − θ)X ∈ (1 − θ)(gα 	 w) we can find a section Σ such that (1 − θ)X ∈ ToΣ
(after conjugation by an element of Q if necessary). Then, if X is regular, Lemma 5.6 implies
[hk0 , X] ⊂ gα 	 w. Since the set of regular vectors is dense, X can always be approximated by a
sequence of regular vectors, and hence, by continuity we also obtain [hk0 , X] ⊂ gα 	 w for non-
regular vectors. Therefore, [hk0 , gα 	w] ⊂ gα 	w. Finally, the skew-symmetry of the elements of
ad(k0) implies [hk0 ,w] ⊂ w. �

We can now finish the proof of Proposition 5.2.

Proof of Proposition 5.2. The fact that ĥ = q ⊕ b ⊕ w ⊕ r is a subalgebra of k0 ⊕ a ⊕ n, and
Lemma 5.7, imply that h̃ = hk0 ⊕ b⊕w⊕ r is a Lie subalgebra of g that contains h and ĥ. Let H̃

be the connected subgroup of G whose Lie algebra is h̃. Since To(H · o) = To(H̃ · o) = To(Ĥ · o) =

b ⊕ (1 − θ)w ⊕ (1 − θ)r and H ⊂ H̃, Ĥ ⊂ H̃, the orbits through o of the groups H, H̃, and Ĥ

coincide. The slice representations at o of H and H̃ have the same principal orbits. Indeed, for
a section Σ through o and v = aB + (1 − θ)ξ + x(1 − θ)Z ∈ ToΣ with ξ ∈ s regular, Lemma 5.6
implies [hk0 , ξ] = gα 	 (w ⊕ s) = [q, ξ]. Thus, the tangent spaces at v of the orbits of the slice

representations of H and H̃ through v coincide, and since H ⊂ H̃, both orbits coincide. Then, the
slice representations at o of H and H̃ are orbit equivalent. Since the codimension of an orbit of H
(resp. of H̃) through expo(v) coincides with the codimension of the orbit of the slice representation

of H (resp. of H̃) through v ∈ νo(H · o) = νo(H̃ · o), and since the orbits of H are contained in the

orbits of H̃, we conclude that the actions of H and H̃ on CHn have the same orbits. Similarly,
an analogous argument with Ĥ instead of H allows to show that the actions of Ĥ and H̃ on CHn

are orbit equivalent, and this completes the proof. �

We now proceed with the proof of Theorem 5.1.
Let H be a closed subgroup of the isometry group of CHn acting polarly on CHn, and assume

that the Lie algebra of H is contained in a maximal parabolic subalgebra k0⊕a⊕n. As we argued
at the beginning of this section, there is a maximal compact subgroup Q of H, and we can assume
that o ∈ CHn is a fixed point of Q, that is, the isotropy group of H at o is Q. We are now
interested in ha⊕n, the orthogonal projection of h on a⊕ n. It is clear that ha⊕n can be written in
one of the following forms: w, R(B +X)⊕w, R(B +X + xZ)⊕w (with x 6= 0), w⊕ R(Y + Z),
or R(B +X)⊕w⊕ R(Y + Z), where w ⊂ gα, and X, Y ∈ gα.

In order to conclude the proof of Theorem 5.1 we deal with these five possibilities separately.

Case 1: ha⊕n = w, with w a subspace of gα.
Here h is in the hypotheses of Proposition 5.2, and it readily follows from Lemma 5.3 that this

case is not possible.

Case 2: ha⊕n = R(B +X)⊕w, with w a subspace of gα, and X ∈ gα 	w.
Assume first that X 6= 0. Then, νo(H · o) = R(−‖X‖2B + (1− θ)X)⊕ (1− θ)(gα 	w)⊕ p2α.

Let Σ be a section through o. Since ToΣ ⊂ νo(H · o), [q,−‖X‖2B + (1− θ)X] ⊂ pα, [q, p2α] = 0,
and [q, pα] ⊂ pα, we get that [q, ToΣ] is orthogonal to a and p2α. As νo(H · o) = ToΣ ⊕ [q, ToΣ]
(orthogonal direct sum) by Proposition 2.3, we readily get that p2α ⊂ ToΣ. Moreover, let T ∈ hk0
be such that T +B+X ∈ h; then T +B+X is orthogonal to [q, ToΣ], and since [q, ToΣ] ⊂ pα we
obtain that X is orthogonal to [q, ToΣ]. The fact that the direct sum νo(H · o) = ToΣ ⊕ [q, ToΣ]
is orthogonal implies that −‖X‖2B + (1− θ)X ∈ ToΣ. However, since ToΣ is totally real we have

0 = 〈i(−‖X‖2B + (1− θ)X), (1− θ)Z〉 = 〈−1

2
‖X‖2(1− θ)Z + (1− θ)JX, (1− θ)Z〉 = −2‖X‖2,

which is not possible because X 6= 0.
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Therefore we must have X = 0, and thus ha⊕n = a⊕w. Note that the fact that h is a subalgebra
of k0 ⊕ a ⊕ n implies that w is a totally real subspace of gα. We are now in the hypotheses of
Proposition 5.2 and, as shown in the proof of Lemma 5.6, w = 0. We conclude that the action of
H is orbit equivalent to the action of the group Ĥ whose Lie algebra is ĥ = q⊕a. This corresponds
to Theorem 5.1(a).

Case 3: ha⊕n = R(B +X + xZ)⊕w, with w a subspace of gα, X ∈ gα 	w, and x ∈ R, x 6= 0.
Let g = Exp(xZ) ∈ G, and let T + r(B +X + xZ) + V be a generic element of h, with V ∈ w,

r ∈ R. Clearly, since g ∈ AN we have Ad(g)(h) ⊂ k0 ⊕ a⊕ n. Then, it is easy to obtain

Ad(g)(T + r(B +X + xZ) + V ) = T + r(B +X + xZ) + V − rxZ = T + r(B +X) + V.

Hence (Ad(g)(h))a⊕n = R(B + X) ⊕ w, and Ad(g)(q) = q. Since Q is a maximal compact
subgroup of Ig(H) = gHg−1, and the orthogonal projection of the Lie algebra of Ig(H) onto a⊕n
is R(B + X) ⊕ w, the new group Ig(H) satisfies the conditions of Case 2. Therefore, the action

of H is orbit equivalent to the action of the group Ĥ whose Lie algebra is ĥ = q ⊕ a. This also
corresponds to Theorem 5.1(a).

Case 4: ha⊕n = w⊕ R(Y + Z), with w a subspace of gα, and Y ∈ gα 	w.
Assume that Y 6= 0. Then, νo(H · o) = a⊕ (1− θ)(gα	w)⊕R(2(1− θ)Y −‖Y ‖2(1− θ)Z). Let

Σ be a section through o. Then, by Proposition 2.3 we have νo(H ·o) = ToΣ⊕ [q, ToΣ] (orthogonal
direct sum). Since [q, 2(1 − θ)Y − ‖Y ‖2(1 − θ)Z] ⊂ pα, [q, a] = 0, and [q, pα] ⊂ pα, we get that
[q, ToΣ] is orthogonal to a and p2α. Then, a ⊂ ToΣ. On the other hand, if T ∈ hk0 is such that
T + Y + Z ∈ h, then T + Y + Z is orthogonal to [q, ToΣ] ⊂ νo(H · o), and since [q, ToΣ] ⊂ pα we
also obtain that Y is orthogonal to [q, ToΣ]. Thus, 2(1 − θ)Y − ‖Y ‖2(1 − θ)Z ∈ ToΣ. But, since
ToΣ is totally real, we get

0 = 〈B, i(2(1− θ)Y − ‖Y ‖2(1− θ)Z)〉 = 〈B, 2(1− θ)JY + 2‖Y ‖2B〉 = 2‖Y ‖2,

which contradicts Y 6= 0.
Therefore we have Y = 0, and thus, ha⊕n = w ⊕ g2α. We are now in the hypotheses of

Proposition 5.2, and we conclude that the action of H is orbit equivalent to the action of the
connected subgroup Ĥ of the isometry group of CHn whose Lie algebra is ĥ = q⊕w⊕ g2α, with
w a subspace of gα. This corresponds to Theorem 5.1(c).

Case 5: ha⊕n = R(B +X)⊕w⊕ R(Y + Z), with w ⊂ gα, and X, Y ∈ gα 	w.
This final possibility is more involved.
Our first aim is to show that Y = 0. So, assume for the moment that Y 6= 0.

Lemma 5.8. We have X = γY + 2
‖Y ‖2 JY , with γ ∈ R.

Proof. Assume that X and Y are linearly dependent, that is, X = λY , with λ ∈ R. Then,
ha⊕n = R(B+λY )⊕w⊕R(Y +Z), and there exist T , S ∈ hk0 such that T+B+λY , S+Y +Z ∈ h.
Then,

[T, S] + [T, Y ]− λ[S, Y ] +
1

2
Y + Z = [T +B + λY, S + Y + Z] ∈ h.

Since [T, Y ]−λ[S, Y ] ∈ gα	RY by the skew-symmetry of the elements of ad(k0), we get 1
2Y +Z ∈

ha⊕n, which is not possible.
Therefore, we can assume that X and Y are linearly independent vectors of gα. In particular,

X 6= 0. Take and fix for the rest of the calculations T , S ∈ hk0 such that T +B+X, S+Y +Z ∈ h.
In this case, the normal space to the orbit through the origin o can be written as

νo(H · o) = R(−‖X‖2B + (1− θ)X − 1

2
〈X,Y 〉(1− θ)Z)⊕ (pα 	 (1− θ)(w⊕ RX ⊕ RY ))

⊕ R(−〈X,Y 〉B + (1− θ)Y − 1

2
‖Y ‖2(1− θ)Z).
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Let Σ be a section of the action of H on CHn through the point o ∈ CHn. By Proposition 2.3 we
have νo(H · o) = ToΣ⊕ [q, ToΣ] (orthogonal direct sum). In particular the vectors T +B +X and
S + Y + Z are orthogonal to [q, ToΣ] ⊂ pα (because [k0, a] = [k0, g2α] = 0). This implies that X
and Y are already orthogonal to [q, ToΣ], and thus, so are −‖X‖2B+ (1− θ)X − 1

2 〈X,Y 〉(1− θ)Z
and −〈X,Y 〉B + (1− θ)Y − 1

2‖Y ‖
2(1− θ)Z. Hence, they are in ToΣ and we can write

ToΣ = R(−‖X‖2B + (1− θ)X − 1

2
〈X,Y 〉(1− θ)Z)

⊕ (1− θ)s⊕ R(−〈X,Y 〉B + (1− θ)Y − 1

2
‖Y ‖2(1− θ)Z),

where s ⊂ gα 	 w is totally real, and CX ⊕ CY is orthogonal to s (because sections are totally
real). The fact that ToΣ is totally real also implies

(4)

0 = 〈i(−‖X‖2B + (1− θ)(X − 1

2
〈X,Y 〉Z)),−〈X,Y 〉B + (1− θ)(Y − 1

2
‖Y ‖2Z)〉

= 〈(1− θ)(−1

2
‖X‖2Z + JX) + 〈X,Y 〉B),−〈X,Y 〉B + (1− θ)(Y − 1

2
‖Y ‖2Z)〉

= ‖X‖2‖Y ‖2 − 〈X,Y 〉2 + 2〈JX, Y 〉.
Now, using Lemma 2.1(a), and (4), we compute

[−‖X‖2B + (1− θ)(X − 1

2
〈X,Y 〉Z),−〈X,Y 〉B + (1− θ)(Y − 1

2
‖Y ‖2Z)]

=
1

2
(1 + θ)

(
−2[θX, Y ] + 〈X,Y 〉X − ‖X‖2Y − ‖Y ‖2JX + 〈X,Y 〉JY − 〈JX, Y 〉Z

)
.

This vector is in [ToΣ, ToΣ], which is orthogonal to h by Proposition 2.3, so taking inner product
with S + Y + Z, and using Lemma 2.1(b) and (4), we get 0 = −2〈[S,X], Y 〉 − 1

2‖Y ‖
2〈JX, Y 〉,

which implies

(5) 〈[S,X], Y 〉 = −1

4
‖Y ‖2〈JX, Y 〉.

We also have

[T +B +X,S + Y + Z] = [T, S] + [T, Y ]− [S,X] +
1

2
Y +

(
1 +

1

2
〈JX, Y 〉

)
Z,

which is in h, so taking inner product with −〈X,Y 〉B + (1− θ)(Y − 1
2‖Y ‖

2Z), and using (5), we
obtain

0 = −〈[S,X], Y 〉+
1

2
‖Y ‖2 − ‖Y ‖2

(
1 +

1

2
〈JX, Y 〉

)
= −1

2
‖Y ‖2

(
1 +

1

2
〈JX, Y 〉

)
.

Since Y 6= 0, we get 〈JX, Y 〉 = −2 and thus (4) can be written as

‖X‖2‖Y ‖2 − 〈X,Y 〉2 = 4 = 〈JX, Y 〉2.
Now put X = γY +δJY +E with E orthogonal to CY , and γ, δ ∈ R. Then, the previous equation
reads ‖E‖2‖Y ‖2 = 0, which yields E = 0. This implies the result. �

Therefore the situation now is ha⊕n = R(B+γY + 2
‖Y ‖2 JY )⊕w⊕R(Y +Z), with CY ⊂ gα	w.

The normal space can be rewritten as

νo(H · o) = R(−2B + (1− θ)JY )⊕ (pα 	 (1− θ)(w⊕ CY ))

⊕ R(−γ‖Y ‖2B + (1− θ)Y − 1

2
‖Y ‖2(1− θ)Z),

and arguing as above, if Σ is a section through o, then

(6) ToΣ = R(−2B + (1− θ)JY )⊕ (1− θ)s⊕ R(−γ‖Y ‖2B + (1− θ)Y − 1

2
‖Y ‖2(1− θ)Z),

where s ⊂ gα 	 (w⊕ CY ) is a totally real subspace of gα.

Lemma 5.9. If S ∈ hk0 is such that S + Y + Z ∈ h then [S, JY ] = 1
4‖Y ‖

2Y .
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Proof. First of all, by the properties of root systems and the skew-symmetry of the elements of
ad(k0), we have [S, JY ] ∈ gα 	 RJY .

Lemma 2.1(a) yields

(7)
[−2B + (1− θ)JY,−γ‖Y ‖2B + (1− θ)(Y − 1

2
‖Y ‖2Z)]

= (1 + θ)
(
−[θJY, Y ] +

(1

2
‖Y ‖2 − 1

)
Y +

γ

2
‖Y ‖2JY +

1

2
‖Y ‖2Z

)
,

which is a vector in [ToΣ, ToΣ].
Take U ∈ w, and let TU ∈ hk0 be such that TU + U ∈ h. Taking inner product with (7) and

using Lemma 2.1(b) we get 0 = 2〈[TU , JY ], Y 〉. Using this equality and since h is a Lie subalgebra,
we now have

0 = 〈[S + Y + Z, TU + U ],−2B + (1− θ)JY 〉 = 〈[S, TU ] + [S,U ]− [TU , Y ], JY 〉 = 〈[S,U ], JY 〉,
and since U ∈ w is arbitrary, [S, JY ] ∈ gα 	 (w⊕ RJY ).

Let ξ ∈ s. Proposition 2.3 implies

0 = 〈S + Y + Z, [−2B + (1− θ)JY, (1− θ)ξ]〉 = −〈S, (1 + θ)[θJY, ξ]〉 = −2〈[S, JY ], ξ〉.
Let η ∈ gα 	 (w⊕CY ) be an arbitrary vector. Since Ad(Q)(ToΣ) = νo(H · o) by Proposition 2.3,
we can conjugate the section Σ in such a way that η ∈ s. (Note that −2B + (1 − θ)JY and
−γ‖Y ‖2B + (1− θ)Y − 1

2‖Y ‖
2(1− θ)Z always belong to ToΣ by (6).) Hence, the equation above

shows that [S, JY ] is orthogonal to gα 	 (w⊕ CY ). Altogether this implies [S, JY ] ∈ RY .
Finally, taking inner product of (7) with S + Y + Z ∈ h we get, using Lemma 2.1(a), 0 =

2〈[S, Y ], JY 〉+ 1
2‖Y ‖

4, and hence [S, JY ] = 1
4‖Y ‖

2Y as we wanted. �

We define g = Exp(−4JY/‖Y ‖2). Recall that the Lie algebra of the isotropy group of H at
g(o) is hg(o) = Ad(g)(k) ∩ h = q ∩ ker ad(JY ), according to Lemma 5.4. Let S ∈ hk0 be such that
S + Y + Z ∈ h. Then, Lemma 5.9 yields

Ad(g)(S) = S − 4

‖Y ‖2
[JY, S] +

8

‖Y ‖4
[JY, [JY, S]] = S + Y + Z ∈ Ad(g)(k) ∩ h.

However, it is clear that S + Y + Z 6∈ q ∩ ker ad(JY ), which gives a contradiction.
Therefore we have proved that Y = 0. Thus ha⊕n = R(B + X) ⊕ w ⊕ g2α. If X = 0 then

ha⊕n = a⊕ w⊕ g2α, and we are under the hypotheses of Proposition 5.2, which implies that the

action of H is orbit equivalent to the action of the group Ĥ whose Lie algebra is ĥ = q⊕a⊕w⊕g2α.
This corresponds to Theorem 5.1(b).

For the rest of this case we assume X 6= 0. Note that the normal space to the orbit through o
is νo(H · o) = R(−‖X‖2B+ (1− θ)X)⊕ (pα	 (1− θ)(w⊕RX)). If Σ is a section through o, since
νo(H · o) = ToΣ ⊕ [q, ToΣ] (orthogonal direct sum), and [q, ToΣ] ⊂ pα, it is easy to deduce, as in
previous cases, that

ToΣ = R(−‖X‖2B + (1− θ)X)⊕ (1− θ)s,
where RX ⊕ s is a real subspace of gα.

We define g = Exp(2X). We will show (Ad(g)(h))a⊕n = a⊕w⊕ g2α and Ad(g)(q) = q, which
will allow us to apply Proposition 5.2. From now on we take T ∈ hk0 such that T +B +X ∈ h.

Let S ∈ q. Then [S, T ] + [S,X] = [S, T +B +X] ∈ h, and thus [S,X] ∈ w. Now let U ∈ w be
an arbitrary vector, and let SU ∈ hk0 such that SU +U ∈ h. We have 0 = 〈[S, SU +U ],−‖X‖2B+
(1 − θ)X〉 = −〈[S,X], U〉, which together with the previous assertion implies [S,X] = 0. Then
Ad(g)(q) = q. In particular this implies that Q is a maximal compact subgroup of Ig(H) = gHg−1.

Now we calculate [T,X]. Let U ∈ w and SU ∈ hk0 such that SU + U ∈ h. Then, by the skew-
symmetry of the elements of ad(k0) we have 0 = 〈[T + B + X,SU + U ],−‖X‖2B + (1 − θ)X〉 =
−〈[T,X], U〉, so [T,X] ∈ gα 	w. Let now ξ ∈ s. By Proposition 2.3 we get, using Lemma 2.1(b),
0 = 〈T + B + X, [−‖X‖2B + (1 − θ)X, (1 − θ)ξ]〉 = −〈T, (1 + θ)[θX, ξ]〉 = −2〈[T,X], ξ〉. Using
again Proposition 2.3 we have νo(H · o) = Ad(Q)(ToΣ), and thus, for any η ∈ gα 	 (w ⊕ RX)
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we can find a section through o such that (1− θ)η ∈ ToΣ (note that −‖X‖2B + (1− θ)X ∈ ToΣ
for any section). Hence the previous argument shows 〈[T,X], η〉 = 0, and altogether this means
[T,X] = 0. Therefore, Ad(g)(T + B +X) = T + B, so the projection of this vector onto a⊕ n is
in a ⊂ a⊕w⊕ g2α.

Fix U ∈ w and SU ∈ hk0 such that SU + U ∈ h. We calculate [SU , X]. For any ξ ∈ s,
by Proposition 2.3 and Lemma 2.1(b), we get 0 = 〈SU + U, [−‖X‖2B + (1 − θ)X, (1 − θ)ξ]〉 =
−2〈[SU , X], ξ〉. As in the previous paragraph, one can argue that ξ can be taken arbitrarily in
gα 	 (w ⊕ RX) by changing the tangent space to the section, if necessary, by an element of
Ad(Q). Hence [SU , X] ∈ w, which yields Ad(g)(SU + U) = SU + U − 2[SU , X] + 1

2 (〈JX,U〉 −
2〈JX, [SU , X]〉)Z, and thus, its projection onto a⊕ n belongs to a⊕w⊕ g2α.

Finally, let SZ ∈ hk0 such that SZ +Z ∈ h. For each ξ ∈ s we obtain 0 = 〈SZ +Z, [−‖X‖2B +
(1 − θ)X, (1 − θ)ξ]〉 = −2〈[SZ , X], ξ〉, and since ξ can be taken to be in gα 	 (w ⊕ RX) by a
suitable conjugation of the section by an element in Ad(Q), we deduce [SZ , X] ∈ w. Hence,
Ad(g)(SZ + Z) = SZ − 2[SZ , X] + (1 − 〈JX, [SZ , X]〉)Z, and the orthogonal projection of this
vector onto a⊕ n belongs to a⊕w⊕ g2α.

These last calculations show that (Ad(g)(h))a⊕n ⊂ a ⊕ w ⊕ g2α. Since g ∈ AN normalizes
k0⊕ a⊕ n, we have that Ad(g)(h) ⊂ k0⊕ a⊕ n. Then the kernel of the projection of Ad(g)(h) onto
a⊕n is precisely Ad(g)(h)∩k0, which is a compact subalgebra of Ad(g)(h) containing q = Ad(g)(q).
By the maximality of q we get that Ad(g)(h) ∩ k0 = q. But then by elementary linear algebra

dim(Ad(g)h)a⊕n = dim Ad(g)(h)− dim(Ad(g)(h) ∩ k0)

= dim h− dim q = dim ha⊕n = dim(a⊕w⊕ g2α).

All in all we have shown that the Lie algebra Ad(g)(h) of Ig(H) = gHg−1 satisfies (Ad(g)(h))a⊕n =
a⊕w⊕g2α, and that Q is a maximal compact subgroup of Ig(H). Therefore, we can apply Propo-
sition 5.2 to Ig(H). This implies that the action of H on CHn is orbit equivalent to the action of

the group Ĥ whose Lie algebra is ĥ = q⊕ a⊕w⊕ g2α. This corresponds to Theorem 5.1(b).
Altogether, we have concluded the proof of Theorem 5.1.

6. Proof of the main result

In this section we conclude the proof of Theorem A using the results of Sections 4 and 5.

Proof of Theorem A. The actions described in part (i) are polar by virtue of Lemma 4.1 and
Theorem 4.2, whereas the polarity of the actions in part (ii) follows from Theorem 3.1.

Since a ⊂ p, the actions in (ii) with b = a contain the geodesic line expo a. On the other hand,
a horospherical foliation of CHn is given by the action on CHn of the connected subgroup N of
G with Lie algebra n = gα⊕ g2α, see [7]. This shows that an orbit of minimal type for the actions
with b = 0 is contained in a horosphere.

An action of a subgroup H of the isometry group I(M) of a Riemannian manifold M is proper
if and only if H is a closed subgroup of I(M). Hence we may assume H ⊂ SU(1, n) is closed.
Since the polarity of the action depends only on the Lie algebra of H by Proposition 2.3, we may
assume that H is connected.

Thus, let H be a connected closed subgroup of SU(1, n) acting polarly on CHn. The Lie
algebra h of H is contained in a maximal subalgebra of su(1, n). By [24, Theorem 1.9, Ch. 6],
the maximal nonsemisimple subalgebras of a semisimple real Lie algebra are parabolic or coincide
with the centralizer of a pseudotoric subalgebra. (A subalgebra t ⊂ g is called pseudotoric if
Exp ad t ⊂ Int g is a torus.) The maximal subalgebras of simple real Lie algebras which are
centralizers of pseudotoric subalgebras have been classified in [26]. However, it is easy to determine
them in the case of su(1, n). Indeed, it follows from [24, Theorem 3.3, Ch. 4] that for all pseudotoric
subalgebras t of su(1, n) there is an element g ∈ SU(1, n) such that Ad(g)t is contained in the
subalgebra comprised of all diagonal matrices in su(1, n). Since we are interested in maximal
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subalgebras which are centralizers of pseudotoric subalgebras t we may restrict ourselves to one-
dimensional pseudotoric subalgebras t. For such a subalgebra we have t = R diag(it0, . . . , itn), for
t0, . . . , tn ∈ R such that t0 + · · ·+ tn = 0. The centralizers of such t are the subalgebras of the form
s(u(1, n1) ⊕ u(n2) ⊕ · · · ⊕ u(n`)) where n1 + · · · + n` = n. In particular, any maximal connected
subgroup of SU(1, n) whose Lie algebra is the centralizer of a pseudotoric subalgebra is conjugate
to one of the maximal subgroups S(U(1, k)U(n− k)), k = 0, . . . , n− 1.

First, let us assume H is contained (after conjugation) in a maximal subgroup of the form
S(U(1, k)U(n − k)) or in a semisimple maximal subgroup of SU(1, n). In both cases, the action
of H on CHn leaves a totally geodesic submanifold invariant; this follows from the Karpelevich-
Mostow Theorem [16], [22] (it is obvious in the first case). This situation has been studied in
Section 4.

If the action of H leaves a totally geodesic RHn invariant, then Theorem 4.2 applies and the
H-action is orbit equivalent to the cohomogeneity one action of SO(1, n). This corresponds to
case (i) with k = n in Theorem A. If the action of H leaves a totally geodesic RHk invariant, with
k < n, then it also leaves a totally geodesic CHk invariant.

Let then k be the smallest complex dimension of a totally geodesic complex hyperbolic subspace
left invariant by the H-action. If k = 0, then the H-action has a fixed point. In this case, it follows
from [13] that H is a subgroup of S(U(1)U(n)) ∼= U(n) that corresponds to a polar action on
CPn−1, and therefore is induced by the isotropy representation of a Hermitian symmetric space.
This corresponds to case (i) with k = 0 in Theorem A.

Let us assume from now on that k ≥ 1. Lemma 4.1 guarantees that the H-action is orbit
equivalent to the product action of a closed subgroup H1 of SU(1, k) acting polarly on CHk

times a closed subgroup H2 of U(n − k) acting polarly (and with a fixed point) on CHn−k. By
assumption, the H1-action on CHk does not leave any totally geodesic CH l or RH l with l < k
invariant. Hence, either the H1-action on CHk is orbit equivalent to the SO(1, k)-action on CHk,
or H1 is contained in a maximal parabolic subgroup of SU(1, k). The first case corresponds to part
(i) with k ∈ {1, . . . , n}. Note that for Q = H2, the Q-action on CHn−k is determined by its slice
representation at the fixed point, so Q acts polarly with a totally real section on ToCHn−k ∼= Cn−k.

Let us consider the second case, that is, H1 is contained in a maximal parabolic subgroup
of SU(1, k), k ∈ {1, . . . , n}. As explained at the beginning of Section 5, we may assume h1 ⊂
k10 ⊕ a ⊕ g1

α ⊕ g2α, where now g1
α is a complex subspace of gα with complex dimension k − 1,

and k10
∼= u(k − 1) is the normalizer of a in k ∩ su(1, k). It follows that the H1-action is orbit

equivalent to the action of a closed subgroup of SU(1, k) with one of the Lie algebras described
in Theorem 5.1: (a) q1 ⊕ a, (b) q1 ⊕ a⊕w⊕ g2α, or (c) q1 ⊕w⊕ g2α, where w is a real subspace
of g1

α, and q1 ⊂ k10 normalizes w. Since H2 ⊂ U(n− k) acts on CHn−k, we can define q = q1⊕ h2,
which is a subalgebra of k0. Part (a) of Theorem 5.1 is then a particular case of Theorem A(i)
for k = 1, while parts (b) and (c) of Theorem 5.1 correspond to Theorem A(ii), where b = a and
b = 0, respectively. Lemma 2.2, Proposition 2.4 and the fact that the slice representation of a
polar action is also polar, guarantee that the action of q on the orthogonal complement of w in
gα is polar with a totally real section. �
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[25] F. Podestà, G. Thorbergsson, Polar actions on rank-one symmetric spaces, J. Differential Geom. 53 (1999),

no. 1, 131–175.

[26] H. Tao, Non-semisimple maximal subalgebras of noncompact semisimple Lie algebras, (Chinese) Acta Math.
Sin. 16 (2) (1966), 253–268. English translation: Chin. Math. 8 (1979), 265–282.

[27] G. Thorbergsson, Transformation groups and submanifold geometry, Rend. Mat. Appl. (7) 25 (2005), no. 1,

1–16.
[28] G. Thorbergsson, Singular Riemannian foliations and isoparametric submanifolds, Milan J. Math. 78 (2010),

no. 1, 355–370.
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2012-004 Grundhöfer, T.; Stroppel, M.; Van Maldeghem, H.: Unitals admitting all translations
2012-003 Hamilton, M.J.D.: Representing homology classes by symplectic surfaces
2012-002 Hamilton, M.J.D.: On certain exotic 4-manifolds of Akhmedov and Park
2012-001 Jentsch, T.: Parallel submanifolds of the real 2-Grassmannian
2011-028 Spreer, J.: Combinatorial 3-manifolds with cyclic automorphism group
2011-027 Griesemer, M.; Hantsch, F.; Wellig, D.: On the Magnetic Pekar Functional and the

Existence of Bipolarons
2011-026 Müller, S.: Bootstrapping for Bandwidth Selection in Functional Data Regression
2011-025 Felber, T.; Jones, D.; Kohler, M.; Walk, H.: Weakly universally consistent static

forecasting of stationary and ergodic time series via local averaging and least
squares estimates

2011-024 Jones, D.; Kohler, M.; Walk, H.: Weakly universally consistent forecasting of
stationary and ergodic time series

2011-023 Györfi, L.; Walk, H.: Strongly consistent nonparametric tests of conditional
independence

2011-022 Ferrario, P.G.; Walk, H.: Nonparametric partitioning estimation of residual and local
variance based on first and second nearest neighbors

2011-021 Eberts, M.; Steinwart, I.: Optimal regression rates for SVMs using Gaussian kernels
2011-020 Frank, R.L.; Geisinger, L.: Refined Semiclassical Asymptotics for Fractional Powers

of the Laplace Operator
2011-019 Frank, R.L.; Geisinger, L.: Two-term spectral asymptotics for the Dirichlet Laplacian

on a bounded domain
2011-018 Hänel, A.; Schulz, C.; Wirth, J.: Embedded eigenvalues for the elastic strip with

cracks
2011-017 Wirth, J.: Thermo-elasticity for anisotropic media in higher dimensions
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2010-007 Grundhöfer, T.; Krinn, B.; Stroppel, M.: Non-existence of isomorphisms between

certain unitals
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