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A POSTERIORI ERROR ANALYSIS OF

OPTIMAL CONTROL PROBLEMS WITH

CONTROL CONSTRAINTS

KRISTINA KOHLS, ARND RÖSCH, AND KUNIBERT G. SIEBERT

Abstract. We derive a unifying framework for the a posteriori error analysis
of control constrained linear-quadratic optimal control problems. We consider

finite element discretizations with discretized and non-discretized control. A
fundamental error equivalence drastically simplifies the a posteriori error anal-

ysis for optimal control problems. It basically remains to apply error estimators

for the linear state and adjoint problem. We give several examples, including
stabilized discretizations, and investigate the quality of the estimators and the

performance of the adaptive iteration by selected numerical experiments.

1. Introduction

Many optimization processes in science and engineering lead to optimal con-
trol problems where the sought state is a solution of a partial differential equation
(PDE). Control and state may be subject to further constraints. The complexity of
such problems requires sophisticated techniques for an efficient numerical approx-
imation of the true solution. One particular method are adaptive finite element
discretizations, which are typically based on the following iteration:

SOLVE → ESTIMATE → MARK → REFINE. (1.1)

The module SOLVE solves the optimal control problem in a finite element space
that is defined over a given grid. The module ESTIMATE computes local error
indicators that constitute an estimator for the true error. Based on information of
the indicators the module MARK selects a subset of elements subject to refinement.
This is executed by REFINE returning a suitable refinement of the current grid. In
this paper we focus on the module ESTIMATE, i. e., the construction of reliable and
efficient a posteriori error estimators for the optimal control problem in terms of
the discrete solution and given data.

Starting with the seminal paper [BR78] by Babuška and Rheinboldt we nowadays
have access to a well-established theory for the a posteriori error analysis of finite
element discretizations of elliptic problems. This includes general inf-sup stable
problems, various kinds of discretizations, and different types of error estimators.
We refer to the monographs [AO00, BS01, BR03, Ver96] and the references therein.

In contrast to this, a posteriori error analysis for constrained optimal control
problems is quite young. It was initiated by Liu and Yan at the beginning of this
century [LY01]. Compared to the vast amount of literature about a posteriori error
estimators for linear problems the existing results for optimal control problems are
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rather limited. We would like to mention [BBM+07, BV09, dlRMV08, HHIK08,
HH08, HH10, HK10, LY02, LLY07, VW08, YZ08].

The a posteriori error analysis for constrained optimal control problems is in-
evitably more technical and complicated due to its intrinsic nonlinear character.
Looking into existing papers one gets the following impression. On the one hand,
many arguments are similar or sometimes even exactly the same as in the linear
case. On the other hand, any new PDE constraint seems to require a new analysis
without directly employing existing results from the linear theory. Moreover, the
used techniques do not use the residual of the optimal control problem. This in turn
does not allow to use current techniques for proving convergence of the adaptive
iteration (1.1); compare with [MSV08, Sie11].

This assessment was the starting point for the presented research, which we
have already sketched in [KRS12]. The key achievement is a unifying framework
for the a posteriori error analysis of linear-quadratic optimal control problems with
control constraints. The a posteriori error analysis then basically reduces to sum
up reliable and efficient estimators for the linear state and adjoint problem. This
procedure has at least two important advantages. Firstly, error estimation for
optimal control problems can now take full advantage of the rich toolbox of existing
estimators for linear problems. This includes the standard residual estimator as
used in [CKNS08], variations of it [AO00, Ver96, VV09], the hierarchical estimator
[SV07, Vee02, Ver96], estimators based on the solution of local problems [MNS03],
estimators using recovering techniques [ZZ87, CB02], or the equilibrated residual
estimators employing the famous Prager&Synge theorem [Bra07, BPS09]. Many of
them have not yet been used for optimal control problems. Secondly, replacing the
residual of the optimal control problem by the residuals of the linear subproblems
is then the key to prove convergence of the adaptive iteration (1.1) for the optimal
control problem [Koh13].

The basis of our analysis is a fundamental error equivalence of the solution of the
optimal control problem to solutions of the linear state and adjoint problem. This
equivalence is discretization independent and solely relies on the continuous problem
being well-posed. The required properties of the continuous problem and the error
equivalence is topic of §2. The discretization independent error equivalence then
in turn includes the standard discretization [Trö10], the variational discretization
by Hinze [Hin05], as well as stabilized discretizations like the SDFEM [RST08].
Required properties of the discretization and basic assumptions on the estimators
for the linear subproblems are listed in §3. We then construct an estimator for the
optimal control problem and prove reliability and efficiency.

The abstract framework is then put into life. In §4 we consider a reaction diffu-
sion problem with boundary control and discretized control space. We employ the
standard residual estimator and the hierarchical estimator for the linear subprob-
lems. The Oseen equations with distributed control and a stabilized discretization
with non-discretized control space is topic of §5. The derivation of a residual esti-
mator exemplifies how much the abstract framework simplifies the error analysis.
We conclude by two numerical experiments in §6. Resorting to the problem and
the estimators from §4 we investigate the estimator quality and the performance of
the adaptive method. Both estimators show adequate numerical effectivity indices
and they are not sensitive to changes in the active and inactive sets. The adaptive
method reveals an optimal adaptive decay rate also for a singular solution.
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2. The Optimal Control Problem and Basic Error Equivalence

We state the abstract control constrained optimal control problem together with
assumptions on the structure of the objective, spaces, and bilinear form for the
constraint. We then prove the fundamental error equivalence.

2.1. The Optimal Control Problem. For given f ∈ Y∗ we consider optimal
control problems of the form

min
u∈Uad

J [u, y] subject to B[y, v] = 〈f + u, v〉Y∗×Y ∀ v ∈ Y, (2.1)

where u is the control, and y the corresponding state. We have a particular interest
in bilinear forms B that arise from the variational formulation of PDEs in the
following setting.

Assumptions on data of (2.1). We suppose that the control space
(
U, 〈·, ·〉U

)
as

well as the state space
(
Y, 〈·, ·〉Y

)
are both L2-based Hilbert spaces. The state space

is defined over some bounded domain Ω ⊂ Rd and the control space is defined over
some subset Γ ⊂ Ω, which allows us to simultaneously treat distributed controls,
i. e., Γ ⊂ Ω with positive d-dimensional Lebesgue measure, and boundary controls,
i. e., Γ ⊂ ∂Ω with positive (d − 1)-dimensional Hausdorff measure. We assume
that the square of the induced norms with induced norms ‖ · ‖Y = ‖ · ‖Y(Ω) and
‖ · ‖U = ‖ · ‖U(Γ) are additive, i. e., for any measurable subsets ω1, ω2 ⊂ Ω with

|ω1 ∩ ω2| = 0 and v ∈ Y we have ‖v‖2Y(ω1∪ω2) = ‖v‖2Y(ω1) + ‖v‖2Y(ω2), and, similarly

for U.
The convex, closed and non-empty set Uad ⊂ U denotes the set of admissible

controls and the spaces Y and U are connected via the embeddings Y ↪→ U ↪→ Y∗
in the following sense: Y∗ is the (topological) dual space of Y, v ∈ Y implies v ∈ U
with ‖v‖U ≤ γ‖v‖Y and u ∈ U implies u ∈ Y∗ by

〈u, v〉 := 〈u, v〉Y∗×Y = 〈u, v〉U ∀ v ∈ Y.
Technically there might be some inclusion operators, like traces, involved. For ease
of presentation they are omitted in the notation.

We assume that B : Y × Y → R is a continuous bilinear form, with continuity
constant ‖B‖, satisfying the inf-sup condition

inf
v∈Y
‖v‖Y=1

sup
w∈Y
‖w‖Y=1

B[v, w] = inf
w∈Y
‖w‖Y=1

sup
v∈Y
‖v‖Y=1

B[v, w] = β > 0. (2.2)

For the definition of the objective J we consider a Fréchet differentiable, quadratic
and strictly convex functional ψ : Y → R. We suppose that ψ′ is locally Lipschitz
continuous with constant L, i. e., ‖ψ′(y)−ψ′(ȳ)‖Y∗(ω) ≤ L‖y−ȳ‖Y(ω) for all y, ȳ ∈ Y
and ω ⊂ Ω. Given a cost parameter α > 0 for the control we finally define

J [u, y] := ψ(y) + α
2 ‖u‖

2
U.

For the discretization we additionally suppose that Ω and Γ can be meshed; the
precise assumptions are stated in §3.1. In §4 and §5 we give typical examples of
PDEs with corresponding Hilbert spaces Y and bilinear forms B, control spaces U
and sets of admissible controls Uad, as well as objective functionals ψ for the desired
state.
Existence and uniqueness. The inf-sup condition (2.2) is equivalent to unique
solvability of the state and adjoint equation

y ∈ Y : B[y, v] = 〈q, v〉Y∗×Y ∀ v ∈ Y (2.3a)

p ∈ Y : B[v, p] = 〈q, v〉Y∗×Y ∀ v ∈ Y (2.3b)

for any q ∈ Y∗ [Neč62, Theorem 5.3]; compare also [NSV09, §2.3] for a more detailed
discussion of the inf-sup theory. This particularly implies the existence of solution
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operators S, S∗ : Y∗ → Y of the state and the adjoint equation. This means, for
given q ∈ Y∗ the unique solutions of (2.3a) and (2.3b) are y = S(q) and p = S∗(q),
respectively. Besides that

‖S‖L(Y∗,Y) ≤ β−1 and ‖S∗‖L(Y∗,Y) ≤ β−1. (2.4)

The assumptions on the embedding Y ↪→ U ↪→ Y∗ imply for any u ∈ U the bound
‖u‖Y∗ ≤ γ‖u‖U, which results in

‖S‖L(U,Y) ≤ β−1γ. (2.5)

Utilizing the solution operator S, we introduce the reduced cost functional
Ĵ [u] := J [u, S(f + u)]. The assumptions on ψ, α > 0, and the inf-sup con-

dition (2.2) imply that Ĵ [u] is bounded from below and strictly convex. If Uad

is not bounded Ĵ [u] is radially unbounded. In combination with the fact that
Uad is non-empty, convex and closed the following theorem emerges; compare with
[Lio71, Trö10].

Theorem 2.1 (Existence and Uniqueness). The constrained optimal control prob-
lem (2.1) has a unique solution (û, ŷ) = (û, S(f + û)) ∈ Uad × Y.

Introducing the adjoint state p̂ = S∗ψ′(ŷ) ∈ Y, the triplet (û, ŷ, p̂) ∈ Uad×Y×Y
is characterized as the unique solution of the first order optimality system

state equation: B[ŷ, v] = 〈f + û, v〉Y∗×Y ∀ v ∈ Y, (2.6a)

adjoint equation: B[v, p̂] = 〈ψ′(ŷ), v〉Y∗×Y ∀ v ∈ Y, (2.6b)

gradient equation: û = Π(p̂), (2.6c)

where Π: U→ Uad denotes for given p the best approximation of − 1
αp in Uad, i. e.,

Π(p) is uniquely determined by

〈αΠ(p) + p, Π(p)− u〉U ≤ 0 ∀u ∈ Uad. (2.7)

2.2. Basic Error Equivalence. In this section we derive the basic error equiva-
lence that is fundamental in the a posteriori error analysis of conforming discretiza-
tions of (2.6).

In order to simplify the presentation we use a . b for a ≤ C b with a constant
that may depend on data constants α, β, γ, ‖B‖, and L. We write a ≈ b for a . b
and b . a. This brings us in the position to state the main result of this section.

Theorem 2.2 (Error Equivalence). If (u, y, p) ∈ U × Y × Y is arbitrarily chosen
and (û, ŷ, p̂) ∈ Uad × Y× Y is the solution to the optimality system (2.6) then

‖u− û‖U + ‖y− ŷ‖Y + ‖p− p̂‖Y ≈ ‖u−Π(p)‖U + ‖y−S(f +u)‖Y + ‖p−S∗ψ′(y)‖Y,

where Π: U → Uad is the nonlinear projection operator of (2.6c), S, S∗ : Y∗ → Y
are the solution operators of the linear state (2.6a) and adjoint (2.6b) equation,
respectively. The constants hidden in “≈” are explicitly stated below in the proof.

We shall prove this theorem in several steps below. We would like to stress that
no special properties of (u, y, p) are required in Theorem 2.2. As a consequence, sta-
bilized discretizations for the approximation of (û, ŷ, p̂) are included in our theory.
Compare with the applications in §4 and §5.

We start the proof of Theorem 2.2 by estimating the error in the state.

Lemma 2.3. We have

‖y − ŷ‖Y ≤
γ

β
‖u− û‖U + ‖y − S(f + u)‖Y,

‖y − S(f + u)‖Y ≤
γ

β
‖u− û‖U + ‖y − ŷ‖Y.
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Proof. From ŷ = S(f + û) we deduce with (2.5)

‖S(f + u)− ŷ‖Y = ‖S(u− û)‖Y ≤ β−1γ‖u− û‖U.

This implies the first claim by

‖y− ŷ‖Y ≤ ‖y−S(f + u)‖Y + ‖S(f + u)− ŷ‖Y ≤ ‖y−S(f + u)‖Y + β−1γ‖u− û‖U.

The second bounds follows similarly by interchanging ŷ and S(f + u). �

A bound of the same type can be derived for the adjoint state.

Lemma 2.4. We have

‖p− p̂‖Y ≤
γL

β2
‖u− û‖U +

L

β
‖y − S(f + u)‖Y + ‖p− S∗ψ′(y)‖Y,

‖p− S∗ψ′(y)‖Y ≤
L

β
‖y − ŷ‖Y + ‖p− p̂‖Y.

Proof. The adjoint state is p̂ = S∗(ψ′(ŷ)). Using similar arguments as before we
obtain by (2.4) with the Lipschitz constant L of ψ′

‖S∗ψ′(y)− p̂‖Y = ‖S∗(ψ′(y)− ψ′(ŷ))‖Y ≤ β−1‖ψ′(y)− ψ′(ŷ)‖Y∗ ≤ β−1L‖y − ŷ‖Y.

Combining this with Lemma 2.3 gives

‖p− p̂‖Y ≤‖p− S∗ψ′(y)‖Y + ‖S∗ψ′(y)− p̂‖Y
≤‖p− S∗ψ′(y)‖Y + β−1L

(
‖y − S(f + u)‖Y + β−1γ‖u− û‖U

)
,

which proves the first bound. The second one is shown similarly by

‖p−S∗ψ′(y)‖Y ≤ ‖p− p̂‖Y + ‖S∗(ψ′(ŷ)−ψ′(y))‖Y ≤ ‖p− p̂‖Y +β−1L‖y− ŷ‖Y. �

Main work has to be done for the error in the control.

Proposition 2.5. We have

‖u− û‖U ≤
(

1 +
γ2L

αβ2

)
‖u−Π(p)‖U +

γL

αβ
‖y − S(f + u)‖Y +

γ

α
‖p− S∗ψ′(y)‖Y,

‖u−Π(p)‖U ≤ ‖u− û‖U +
γ

α
‖p− p̂‖Y.

Proof. We proceed in several steps.
1 We introduce the auxiliary control ū = Π(p) and prove first

‖ū− û‖U ≤
γL

αβ
‖y − S(f + ū)‖Y +

γ

α
‖p− S∗ψ′(y)‖Y. (2.8)

Recalling û = Π(p̂) and ū = Π(p), the definition (2.7) of Π implies

〈αū+ p, ū− û〉U ≤ 0 and 〈αû+ p̂, û− ū〉U ≤ 0.

From this we conclude with p̂ = S∗(ψ′(ŷ))

α‖ū− û‖2U = 〈αū+ p, ū− û〉U + 〈αû+ p̂, û− ū〉U + 〈p− p̂, û− ū〉U
≤ 〈p− p̂, û− ū〉U
= 〈p− S∗ψ′(y), û− ū〉U + 〈S∗(ψ′(y)− ψ′(ŷ)), û− ū〉U.

The first term on the right hand side we bound by

〈p− S∗ψ′(y), û− ū〉U ≤ ‖p− S∗ψ′(y)‖U‖û− ū‖U ≤ γ‖p− S∗ψ′(y)‖Y‖û− ū‖U.
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Employing the definition of S and S∗, recalling ŷ = S(f+û), and using the auxiliary
state ỹ := S(f + ū) we proceed with the second term by

〈û− ū, S∗(ψ′(y)− ψ′(ŷ))〉U = B[S(û− ū), S∗(ψ′(y)− ψ′(ŷ))]

= 〈ψ′(y)− ψ′(ŷ), S(û− ū)〉Y∗×Y = 〈ψ′(y)− ψ′(ŷ), ŷ − ỹ〉Y∗×Y
= 〈ψ′(y)− ψ′(ỹ), ŷ − ỹ〉Y∗×Y + 〈ψ′(ỹ)− ψ′(ŷ), ŷ − ỹ〉Y∗×Y
≤ γβ−1L‖y − ỹ‖Y‖ū− û‖U = γβ−1L‖y − S(f + ū)‖Y‖ū− û‖U

since the convexity of ψ yields 〈ψ′(ỹ) − ψ′(ŷ), ŷ − ỹ〉Y∗×Y ≤ 0. Combining these
steps we arrive at

α‖û− ū‖2U ≤ γ‖ū− û‖U
(
β−1L‖y − S(f + ū)‖Y + ‖p− S∗ψ′(y)‖Y

)
,

which implies (2.8).
2 We start with

‖y − S(f + ū)‖Y ≤ ‖y − S(f + u)‖Y + β−1γ‖u− ū‖U.
Since ū = Π(p) we conclude the first claim from (2.8) by

‖u− û‖U ≤ ‖u− ū‖U + ‖ū− û‖U

≤ ‖u−Π(p)‖U +
γL

αβ
‖y − S(f + ū)‖Y +

γ

α
‖p− S∗ψ′(y)‖Y

≤
(

1 +
γ2L

αβ2

)
‖u−Π(p)‖U +

γL

αβ
‖y − S(f + u)‖Y +

γ

α
‖p− S∗ψ′(y)‖Y.

3 The Lipschitz constant of Π is α−1, which can be seen from

α‖Π(u1)−Π(u2)‖2U = 〈αΠ(u1) + u1, Π(u1)−Π(u2)〉U
+ 〈αΠ(u2) + u2, Π(u2)−Π(u1)〉U
+ 〈u1 − u2, Π(u2)−Π(u1)〉U

≤ ‖u1 − u2‖U‖Π(u2)−Π(u1)‖U
for all u1, u2 ∈ U by (2.7). This immediately yields

‖u−Π(p)‖U ≤ ‖u− û‖U + ‖Π(p̂)−Π(p)‖U ≤ ‖u− û‖U + α−1γ‖p− p̂‖Y,
and proves the second claim. �

The proof of Theorem 2.2 is now a direct consequence of these auxiliary results.

Proof of Theorem 2.2. Combining the first estimates of Lemmas 2.3, 2.4, and Pro-
position 2.5 gives the upper bound‖u− û‖U‖y − ŷ‖Y

‖p− p̂‖Y

 ≤
 1 + γ2L

αβ2
γL
αβ

γ
α

γ
β + γ3L

αβ3 1 + γ2L
αβ2

γ2

αβ
Lγ
β2 + γ3L2

αβ4
L
β + γ2L2

αβ3 1 + Lγ2

αβ2


 ‖u−Π(p)‖U
‖y − S(f + u)‖Y
‖p− S∗ψ′(y)‖Y

 .
The respective second estimates immediately yield the lower bound ‖u−Π(p)‖U

‖y − S(f + u)‖Y
‖p− S∗ψ′(y)‖Y

 ≤
1 0 γ

α
γ
β 1 0

0 L
β 1


‖u− û‖U‖y − ŷ‖Y
‖p− p̂‖Y

 .
This finishes the proof. �

3. The Discrete Problem and A Posteriori Error Control

We state the discretized optimal control problem, and derive the a posteriori
error estimator from the basic error equivalence in Theorem 2.2.
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3.1. Discretized Optimal Control Problem. We discretize the problem by fi-
nite elements and consider two variants. In the first variant we only discretize the
state space and work in the continuous control space. Alternatively, we discretize
both state and control space. For both approaches we shall use the same notation
for the discrete solutions (Û , Ŷ , P̂ ) and only refer to the specific discretization when
needed.

Let T be a conforming, exact and shape-regular triangulation of Ω that is locally
quasi-uniform. Suppose that Y(T ) ⊂ Y is a conforming finite element space over T .
To also allow for stabilized discretizations we let BT : Y(T )×Y(T )→ R and 〈·,·〉T be
a discrete continuous bilinear form and a discrete duality pairing on Y(T )∗×Y(T ).
We suppose that BT satisfies the discrete inf-sup condition

inf
V∈Y(T )
‖V ‖T =1

sup
W∈Y(T )
‖W‖T =1

BT [V, W ] = β(T ) > 0 or inf
W∈Y(T )
‖W‖T =1

sup
V∈Y(T )
‖V ‖T =1

BT [V, W ] = β(T ) > 0,

where ‖·‖T is a suitable mesh-dependent norm. In case on non-stabilized discretiza-
tion, i. e., BT = B, we have ‖ ·‖T = ‖ ·‖Y. Otherwise, ‖ ·‖T is chosen accordingly to
the stabilization and it is typically stronger than ‖·‖Y. Any single inf-sup condition
implies the other one, thanks to Y(T ) being finite dimensional. Consequently, the
inf-sup theory implies that for any q ∈ Y(T )∗ there exist unique solutions to the
discrete state and adjoint equation

Y ∈ Y(T ) : BT [Y, V ] = 〈q, V 〉T ∀V ∈ Y(T ), (3.1a)

P ∈ Y(T ) : BT [V, P ] = 〈q, V 〉T ∀V ∈ Y(T ). (3.1b)

In the a posteriori error analysis only the continuous inf-sup constant β from (2.2)
enters but not the discrete inf-sup constant β(T ). Nevertheless, stable discretiza-
tions with a uniform lower bound on the discrete inf-sup constant β(T ) ≥ β > 0
are essential for optimal order a priori error estimates [Bab71] and convergence of
adaptive methods [MSV08, Sie11].

Non-discretized control. We suppose that the nonlinear projection operator
Π: U→ Uad introduced in (2.7) is computable for discrete functions V ∈ Y(T ).
This assumption allows us to pose the following discrete optimal control problem:

min
u∈Uad

J [u, Y ] s .t. BT [Y, V ] = 〈f + u, V 〉T ∀V ∈ Y(T ). (3.2)

Discretized control. In this approach we additionally replace the continuous con-
trol space U by some finite element space U(G) over a conforming, exact and shape-
regular triangulation G of Γ. Assuming that Uad(G) := Uad∩U(G) is nonempty, we
consider the discretized optimal control problem

min
U∈Uad(G)

J [U, Y ] s. t. BT [Y, V ] = 〈f + U, V 〉T ∀V ∈ Y(T ). (3.3)

In this approach the discrete projection operator ΠG : Y(T )→ Uad(G) with

〈αΠG(P ) + P, ΠG(P )− U〉U ≤ 0 ∀U ∈ Uad(G) (3.4)

replaces the continuous projection Π: U → Uad. The grids T and G are typically
connected in the following way. In case of distributed controls G ⊆ T . In case of
boundary controls G is the trace of T on Γ. This allows for an easy transfer of
information between the finite element spaces Y(T ) and U(G) as well as an exact
and cheap computation of 〈U, V 〉T or ΠG(P ).

First order optimality system. Using the same arguments as in §2.1 we deduce
existence and uniqueness of a discrete solution (Û , Ŷ ) ∈ Uad × Y(T ) to (3.2), and

(Û , Ŷ ) ∈ Uad(G)× Y(T ) to (3.3), respectively.
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Introducing the discrete adjoint state, the discrete optimal solution (Û , Ŷ , P̂ ) is
characterized by the discrete first order optimality system

Ŷ ∈ Y(T ) : BT [Ŷ , V ] = 〈f + Û , V 〉T ∀V ∈ Y(T ), (3.5a)

P̂ ∈ Y(T ) : BT [V, P̂ ] = 〈ψ′(Ŷ ), V 〉T ∀V ∈ Y(T ) (3.5b)

and

Û = Π(P̂ ) ∈ Uad or Û = ΠG(P̂ ) ∈ Uad(G) (3.5c)

in case of non-discretized control or discretized control, respectively. Note, that
in the first case the ‘discrete’ optimal control Û is not a finite element function in
U(G).

In order to simplify the presentation and to highlight the important arguments
we pose the following simplifying assumptions.

(1) We do not commit variational crimes in the assemblage of the discrete optimality
system (3.5). This is, all integrals and dualities are evaluated exactly for given data
and discrete functions. This assumption is essential since rigorously estimating
quadrature errors a posteriori is not possible for general data.

(2) We suppose that we can compute the exact solutions to the discretized optimal
control problems (3.2) or (3.3). In practice, one solves the corresponding first order
optimality system (3.5) with a semi-smooth Newton (SSN) method; compare with
[Hin05, HV09] for non-discretized control and [BIK99, HIK02, KR02] for discretized
control. In case of the optimal control problem under consideration the SSN method
is equivalent to a primal dual active set strategy. Both methods are iterative solvers
that are terminated in practice if the actual iterate is sufficiently close to the exact
discrete solution. Assuming that the solver provides information about the distance
of the computed solution to the exact discrete solution in an appropriate norm, it
is possible to also carry out the a posteriori error analysis for an inexact discrete
solution. The inexactness gives rise to an additional consistency error that can be
estimated with the information from the solver; compare with [Ver96].

3.2. A Posteriori Error Control. For deriving an estimator for the optimal
control problem (2.1) we combine Theorem 2.2 with estimators

Ey(Y, q; T ) =

(∑
T∈T
E2
y (Y, q;T )

)1/2

and Ep(P, q; T ) =

(∑
T∈T
E2
p (P, q;T )

)1/2

for the linear problems (2.3a) and (2.3b). We denote by oscy and oscp the typical
oscillation terms that have to be present in the lower bound. For any subset T ′ ⊆ T
we set

oscy(Y, q; T ′) =

( ∑
T∈T ′

osc2
y(Y, q;T )

)1/2

and similarly for oscp. For T ∈ T we let NT (T ) = {T ′ ∈ T | T ′ ∩T 6= ∅} be the set
of its direct neighbors, and ωT (T ) =

⋃
T ′∈NT (T ) T

′ the local patch around T .

After these preparations we are ready to precisely pose the assumptions on the
estimators for the linear sub-problems. Hereafter, the constant hidden in ‘.’ may
additionally depend on the shape-regularity of T but not on a particular source
term of (2.3a) and (2.3b).

Assumption 3.1 (Estimators for the Linear Problems). We suppose that Ey and
Ep have the following properties:
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(1) Reliability: The estimators Ey and Ep provide an upper bound for the true
error, i. e., for any q1 ∈ f +U and q2 ∈ rg(ψ′) and the Galerkin approximations
Yq1 , Pq2 ∈ Y(T ) of (3.1a) and (3.1b), respectively, we have

‖Yq1 − Sq1‖Y . Ey(Yq1 , q1; T ), (3.6a)

‖Pq2 − S∗q2‖Y . Ep(Pq2 , q2; T ). (3.6b)

(2) Local Efficiency: The indicators of Ey and Ep are local lower bounds for the
true error up to oscillation, i. e., for any Y, P ∈ Y(T ) and any q1 ∈ f + U and
q2 ∈ rg(ψ′) we have

Ey(Y, q1;T ) . ‖Y − Sq1‖Y(ωT (T )) + oscy(Y, q1;NT (T )), (3.7a)

Ep(P, q2;T ) . ‖P − S∗q2‖Y(ωT (T )) + oscp(P, q2;NT (T )). (3.7b)

(3) Lipschitz Continuity of Indicators: The indicators of Ey and Ep are Lip-
schitz continuous with respect to their second arguments, i. e., for Y, P ∈ Y(T ),
q1, q̄1 ∈ f + U, and q2, q̄2 ∈ rg(ψ′) we have

|Ey(Y, q1;T )− Ey(Y, q̄1;T )| . ‖q1 − q̄1‖U(Γ∩T ), (3.8a)

|Ep(P, q2;T )− Ep(P, q̄2;T )| . L‖y − ȳ‖Y(T ), (3.8b)

where y, ȳ ∈ Y are such that ψ′(y) = q2 and ψ′(ȳ) = q̄2.

We would like to remark that asking for q1 ∈ f + U and q2 ∈ rg(ψ′) instead of
q1, q2 ∈ Y∗ in the definition of Ey and Ep induces additional regularity of the source
terms that is often necessary to derive a specific estimator, for instance the residual
estimator.

The estimator for the error in the control is constructed from the indicators
Eu(U, p;T ) = ‖U − Π(p)‖U(Γ∩T ) with the convention ‖U − Π(p)‖U(∅) = 0, and we
set

‖U −Π(p)‖2U = E2
u(U, p; T ) =

∑
T∈T
E2
u(U, p;T ).

This brings us in the position to prove the main result of the paper.

Theorem 3.2 (A Posteriori Error Control). Let (û, ŷ, p̂) be the true solution of

(2.1), let (Û , Ŷ , P̂ ) be the discrete solution either of (3.2) or (3.3), and suppose
that Ey and Ep satisfy Assumption 3.1. Then

Eocp(Û , Ŷ , P̂ ; T ) := Eu(Û , P̂ ; T ) + Ey(Ŷ , f + Û ; T ) + Ep(P̂ , ψ′(Ŷ ); T )

is an estimator for the optimal control problem, which is reliable, i. e.,

‖Û − û‖U + ‖Ŷ − ŷ‖Y + ‖P̂ − p̂‖Y . Eocp(Û , Ŷ , P̂ ; T ),

and globally efficient, i. e.,

Eocp(Û , Ŷ , P̂ ; T ) . ‖Û − û‖U + ‖Ŷ − ŷ‖Y + ‖P̂ − p̂‖Y
+ oscy(Ŷ , f + û, T ) + oscp(P̂ , ψ

′(ŷ); T ).

In case of non-discretized control (3.2) we have Eu(Û , P̂ ; T ) = 0 and the estimator
Eocp is locally efficient, i. e., for all T ∈ T we have

Eocp(Û , Ŷ , P̂ ;T ) . ‖Û − û‖U(Γ∩T ) + ‖Ŷ − ŷ‖Y(ωT (T )) + ‖P̂ − p̂‖Y(ωT (T )

+ oscy(Ŷ , f + û,NT (T )) + oscp(P̂ , ψ
′(ŷ);NT (T )).

Proof. 1 Reliability is a direct consequence of Theorem 2.2 applied to the discrete
solution (Û , Ŷ , P̂ ) in combination with the Assumption 3.1 (1). For non-discretized

control we have Û = Π(P̂ ). This implies Eu(Û , P̂ ; T ) = ‖Û −Π(P̂ )‖U = 0.
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2 Looking at the contribution Ey we derive from Assumption 3.1 (3) and (2)

Ey(Ŷ , f + Û ;T ) . Ey(Ŷ , f + û;T ) + ‖Û − û‖U(Γ∩T )

. ‖Û − û‖U(Γ∩T ) + ‖Ŷ − ŷ‖Y(ωT (T )) + oscy(Ŷ , f + û;NT (T )).

Arguing similarly for Ep we derive

Ep(P̂ , ψ′(Ŷ );T ) . Ep(P̂ , ψ′(ŷ);T ) + ‖Ŷ − ŷ‖Y(T )

. ‖P̂ − p̂‖Y(ωT (T )) + ‖Ŷ − ŷ‖Y(T ) + oscp(P̂ , ψ
′(ŷ);NT (T )).

This shows local efficiency in case of non-discretized control.
3 In the proof of Proposition 2.5 3 we have shown that Π is globally Lipschitz-

continuous with constant α−1. This yields

Eu(Û , P̂ ; T ) ≤ ‖Û −Π(p̂)‖U + ‖Π(p̂)−Π(P̂ )‖U ≤ ‖Û − û‖U + α−1γ‖P̂ − p̂‖Y,
utilizing the (global) embedding Y ↪→ U.
4 Local quasi-uniformity of T implies

max
T∈T

#{T ′ ∈ T | |NT (T ′) ∩NT (T )| > 0} . 1.

Additivity of ‖ · ‖2Y and osc2
y then in turn yields∑

T∈T
‖v‖2Y(ωT (T )) . ‖v‖

2
Y and

∑
T∈T

osc2
y(Y, q;NT (T )) . osc2

y(Y, q; T ).

This is also true for ‖ · ‖2U and osc2
p. Consequently, summing up the indicators of

step 2 in combination with the bound Eu yields global efficiency in any case. �

We conclude this section by some remarks about the control error indicator Eu
in case of discretized control.

Remark 3.3 (Efficiency of Eu). (1) In case of discretized control the contribution Eu
does not vanish in general. For typically used discretizations and projections Π the
term Eu(Û , P̂ ; T ) is a computable quantity. However, this term is often estimated
further to simplify computations; compare for instance with [HHIK08, LY01]. In
general this leads to a non-efficient contribution; compare with Remark 6.1 below.
(2) The proof of Theorem 3.2 reveals that the contributions Ey and Ep are locally
efficient. The problematic contribution for Eocp being locally efficient is Eu. This
term is only locally efficient if Π and the embedding Y ↪→ U have the following
local properties:

• The continuous projection operator Π: U→ Uad is locally Lipschitz, i. e.,

‖Π(u)−Π(ū)‖U(Γ∩T ) . ‖u− ū‖U(Γ∩T ) ∀T ∈ T , u, ū ∈ U.

• The embedding Y ↪→ U is locally uniform, i. e.,

‖y‖U(Γ∩T ) . ‖y‖Y(T ) ∀T ∈ T , y ∈ Y. (3.9)

In this case local efficiency of Eu and, consequently, of Eocp is evident.
The assumption on Π is for instance fulfilled for box constraints. The embedding

Y ↪→ U is locally uniform in case of distributed controls but not in case of boundary
controls. In the latter case, the bound in (3.9) requires a scaled trace inequality,
which is not locally uniform. Consequently, local efficiency of Eocp is here only
granted for non-discretized control.

4. A Diffusion-Reaction Problem with Boundary Control

In this section we demonstrate how the general framework derived in the previous
sections can be used to easily derive a posteriori error estimators. The particular
problem introduced here will be used in the numerical experiments presented in §6.
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4.1. Data of the Continuous Problem and Discretization. We state data of
the continuous problem in terms of the general framework and then describe its
discretization.
Data of the continuous problem. We consider the following diffusion-reaction
problem with boundary control:

−∆y + y = f2 in Ω, ∇y · n =

{
u+ f1 on Γ,

0 on ∂Ω\Γ,

where Γ ⊂ ∂Ω has positive Hausdorff measure, and f1 ∈ L2(Γ), f2 ∈ L2(Ω) is given
data.

The state space for this example is Y = H1(Ω) with norm ‖ · ‖Y = ‖ · ‖H1(Ω),
and the control space is U = L2(Γ) with norm ‖ · ‖U = ‖ · ‖L2(Γ). The embedding
Y ↪→ U ↪→ Y∗ is naturally given by the trace operator and γ equals its norm.

The bilinear form B for the weak formulation of the PDE is given by

B[y, v] :=

∫
Ω

∇v · ∇y + v y dV = 〈y, v〉H1(Ω) = 〈y, v〉Y.

Consequently, B is continuous and coercive on Y with ‖B‖ = β = 1. Moreover,
setting 〈f, v〉Y∗×Y := 〈f1, v〉L2(Γ) + 〈f2, v〉L2(Ω) we see f ∈ Y∗ = (H1(Ω))∗.

We use box constraints, i. e., for given a, b ∈ U(T0) with a ≤ b we let

Uad := {u ∈ U | a ≤ u ≤ b on Γ} 6= ∅.

The continuous projection operator Π: U → Uad is therefore given for almost all
x ∈ Γ by

Π(u)(x) =


a(x) if − 1

αu(x) ≤ a(x),

− 1
αu(x) if − 1

αu(x) ∈ [a(x), b(x)],

b(x) if − 1
αu(x) ≥ b(x).

Finally, for given g ∈ U and desired state yd ∈ L2(Ω) we define the objective

J [u, y] := ψ(y) +
α

2
‖u‖2U :=

1

2
‖y − yd‖2L2(Ω) + 〈g, y〉L2(Γ) +

α

2
‖u‖2U.

The Fréchet derivative of ψ is given by ψ′(y) = 〈y − yd, ·〉L2(Ω) + 〈g, ·〉L2(Γ) ∈ Y∗.
It is locally Lipschitz continuous with constant L = 1.

For applying the abstract frame work we need to provide error estimators for
the following problems. For given u ∈ U solve for y = S(f + u), i. e.,

y ∈ Y : B[y, v] = 〈f1 + u, v〉L2(Γ) + 〈f2, v〉L2(Ω) ∀ v ∈ Y, (4.1a)

and for given y ∈ Y solve for p = S∗ψ′(y), i. e.,

p ∈ Y : B[v, p] = 〈y − yd, v〉L2(Ω) + 〈g, v〉L2(Γ) ∀ v ∈ Y. (4.1b)

Since B is symmetric and the right hand sides have the same structure, an estimator
for (4.1a) is also an estimator for (4.1b).

Discretization. We assume that the macro-triangulation T0 meshes Ω exactly and
in such a way that G0 := {T ∩ Γ|T ∈ T0} meshes Γ exactly. We concentrate on the
case of discretized control and use piecewise polynomial spaces of degree `y ≥ 1,
`u ≥ 0 such that

Y(T ) := {V ∈ C0(Ω) | V|T ∈ P`y (T ) ∀T ∈ T },
U(G) := {V ∈ L2(Γ) | V|E ∈ P`u(E) ∀E ∈ G}.

The assumption a, b ∈ U(G0) implies Uad(G) = U(G) ∩ Uad 6= ∅. We choose to
use BT = B and 〈·, ·〉T = 〈·, ·〉Y∗×Y without any stabilization. The bilinear-form
B is coercive on Y(T ) ⊂ H1(Ω), which yields the discrete inf-sup condition with
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βT = β = 1. Let (Û , Ŷ , P̂ ) ∈ Uad(G)×Y(T )×Y(T ) be the solution to the discrete
first order optimality system (3.5) in this setting.

4.2. A Posteriori Error Control. We accept Eu(Û , P̂ ; T ) = ‖Û − Π(P̂ )‖L2(Γ)

as a computable quantity. Therefore Theorem 3.2 yields a reliable and globally
efficient estimator Eocp for the overall error if we provide estimators Ey, Ep for the
linear subproblems (4.1) that satisfy Assumption 3.1. We give two examples.

Example 4.1 (Residual Estimator). The idea of the residual estimator is to decom-
pose the residual into a regular part in L2(Ω) and a singular part in L2(Σ), where
Σ is the union of all inter-element sides. The residual estimator is then a sum of
properly scaled L2 norms of the two contributions. The indicators on T ∈ T for
(4.1a) and (4.1b) read:

Ey(Ŷ , Û + f ;T ) = hT ‖ −∆Ŷ + Ŷ − f2‖L2(T )

+ h
1/2
T ‖ [[Ŷ ]] ‖L2(∂T\Γ) + h

1/2
T ‖ [[Ŷ ]]− (Û + f1)‖L2(∂T∩Γ),

Ep(P̂ , ψ′(Ŷ );T ) = hT ‖ −∆P̂ + P̂ − (Ŷ − yd)‖L2(T )

+ h
1/2
T ‖ [[P̂ ]] ‖L2(∂T\∂Γ) + h

1/2
T ‖ [[P̂ ]]− g‖L2(∂T∩Γ),

where hT = |T |1/d is the local mesh-size and [[·]] denotes the flux of the normal
derivative on inter-element sides and the normal derivative for a boundary side.

The estimators Ey and Eu satisfy Assumption 3.1: Reliability and local efficiency
of the estimator is well-known; compare for instance with [Ver96, Proposition 1.5].
Lipschitz-continuity of the indicators in the second component is a direct conse-
quence of the triangle inequality.

Considering distributed control, [LY01] and [HHIK08] have derived the same es-
timator contributions (up to appropriate modifications accounting for distributed
controls). Only the indicator Eu for the control error differs; compare with Re-
mark 6.1 below. Being one of the first results concerning error estimation for
optimal control problems, their respective proofs are more involved, because the a
posteriori error analysis mixes with the abstract error equivalence of Theorem 2.2.

Example 4.2 (Hierarchical Estimator). We restrict ourselves to the case `y = 1
and `u = 0. The idea of hierarchical estimators is based upon evaluating the
residual with sufficiently many discrete functions of an enriched space Y(T )′ )
Y(T ). Suitable functions are side bubble functions that are either higher order
finite elements on the same grid or linear finite elements on a refined mesh. For
given (y, u+ f) the residual Resy(y, u+ f) ∈ Y∗ of the primal problem (4.1a) is

〈Resy(y, u+ f), v〉 := B[y, v]− 〈f1 + u, v〉L2(Γ) − 〈f2, v〉L2(Ω) ∀ v ∈ Y,

and for given (p, y) the residual Resp(p, ψ
′(y)) ∈ Y∗ of the adjoint problem (4.1b)

is

〈Resp(p, ψ
′(y)), v〉 := B[v, p]− 〈y − yd, v〉L2(Ω) − 〈g, v〉L2(Γ) ∀ v ∈ Y.

We denote by S the set of all sides of T . If E ∈ S is a boundary side there exists
a unique T ∈ T with E ⊂ T and we set ωE := T . Otherwise E is an inter-element
side of T, T ′ ∈ T and we set ωE := T ∪ T ′. In any case we let zE be the barycenter
of S. We then consider an enrichment Y(T )′ ) Y(T ) that provides for any E ∈ S
a function ΦE ∈ Y(T )′\Y(T ) with

ΦE(zE) > 0, supp(ΦE) ⊂ ωE , and ‖ΦE‖H1(Ω) = 1.

We let hE := diam(E). For E ⊂ ∂Ω we define oscT (g;E) := h
1/2
E ‖g− ḡ‖L2(E) with

the mean value ḡ = |E|−1 ∫
E
g dA. For an interior side E we define oscT (g;E) := 0.
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The side-oriented indicators on E ∈ S for (4.1a) and (4.1b) read:

E2
y (Ŷ , Û + f ;E) := |〈Resy(Ŷ , Û + f), ΦE〉|2

+ h2
E‖Ŷ − f2‖2L2(ωE) + osc2

T (f1;E)

E2
p (P̂ , ψ′(Ŷ );E) := |〈Resp(P̂ , ψ

′(Ŷ )), ΦE〉|2

+ h2
E‖P̂ − (Ŷ − yd)‖2L2(ωE) + osc2

T (g;E).

One easily obtains element-based indicators on T ∈ T by summing up the contri-
butions of all sides E ⊂ T .

Reliability and efficiency can be shown as follows. The indicators of the hierar-
chical estimator are equivalent to the indicators of the residual estimator considered
in Example 4.1; compare with [KS11, §2.2.3] or [Ver96, §4]. A direct proof of relia-
bility and efficiency without using the equivalence to the residual estimator can be
found in [SV07, Vee02]. Lipschitz-continuity follows directly of Lipschitz-continuity
of the residuals Resy,Resp, and the L2 norms. Consequently, the estimators Ey and
Ep comply with Assumption 3.1.

Using an enrichment Y(T )′ ) Y(T ) that additionally provides for any element

T ∈ T a function ΦT ∈ Y(T )′ \ Y(T ) one can replace the terms hE‖Ŷ − f2‖L2(ωE)

hE‖P̂ − (Ŷ − yd)‖L2(ωE) by suitable oscillation terms that are generically of higher
order; compare with [KS11, §2.3.3].

To our best knowledge the hierarchical estimator has not been considered before
for optimal-control problems.

5. The Oseen Problem with Distributed Control and Stabilized
Discretization

We next demonstrate how the derived framework can be used to easily derive
error estimators for the optimal control problem (2.1) with stabilized discretizations
of the state and adjoint problem.

5.1. Data of the Continuous Problem and Discretization. We state the
continuous problem and then a streamline diffusion discretization.

Data of the continuous problem. We consider the Oseen problem with dis-
tributed control:

−∆y + [∇y]b +∇q = f + u in Ω, div y = 0 in Ω, y = 0 on ∂Ω,

where b ∈ L∞(Ω;Rd) with div b = 0 and f ∈ L2(Ω;Rd) is given data. Here, the
state y = (y, q) is the velocity and the pressure of the fluid.

The state space is Y = H1
0 (Ω;Rd) × {q ∈ L2(Ω) | 〈q, 1〉L2(Ω) = 0}. We use

the norm ‖y‖2Y(Ω) = ‖∇y‖2L2(Ω) + ‖q‖2L2(Ω) for y = (y, q) ∈ Y. The space Y is a

Hilbert space with respect to ‖ · ‖Y thanks to the Friedrichs estimate ‖y‖L2(Ω) ≤
CF ‖y‖L2(Ω) on H1

0 (Ω;Rd). The control space is U = L2(Ω;Rd) with the natural
norm ‖ · ‖U(Ω) = ‖ · ‖L2(Ω). The embedding Y ↪→ U ↪→ Y∗ is given by the inclusion

H1
0 (Ω;Rd) ⊂ L2(Ω;Rd) and γ ≤ CF .
The bilinear form B for the weak formulation of the PDE is

B[y, v] = B[(y, q), (v, r)] :=

∫
Ω

∇v : ∇y + v · [∇y]b− div vq + div yr dV.

It is continuous with ‖B‖ ≤ 3 + CF ‖b‖L∞(Ω). Moreover, B satisfies the inf-sup
condition (2.2) thanks to div b = 0, the Friedrichs inequality, and the solvability of
the divergence equation [Gal94, Theorem III.3.1].

We use norm constraints, i. e., for given R > 0 and a norm |·| on Rd we set

Uad = {u ∈ U | |u| ≤ R in Ω} 6= ∅.
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The continuous projection operator Π: U → Uad is therefore given for almost all
x ∈ Ω by

Π(u)(x) =

{
− 1
αu(x) if 1

α |u(x)| ≤ R,
−R u(x)

|u(x)| else.

Aiming at minimizing variations in the velocity y at a low pressure q and recalling
‖y‖2Y = ‖(y, q)‖2Y = ‖∇y‖2L2(Ω) + ‖q‖2L2(Ω), we define the objective by

J [u, y] = ψ(y) +
α

2
‖u‖2U :=

1

2
‖y‖2Y +

α

2
‖u‖2U.

The functional ψ = 1
2‖ · ‖

2
Y is Fréchet differentiable, and ψ′ is locally Lipschitz

continuous with constant L = 1.
For applying the abstract framework we need to provide error estimators for the

following problems. For given u ∈ U solve for y = S(f + u), i. e.,

y = (y, q) ∈ Y : B[y, v] =

∫
Ω

(f + u) · v dV ∀ v = (v, r) ∈ Y, (5.1a)

and for given y = (y, q) ∈ Y solve for p = S∗ψ′(y), i. e.,

p = (p, s) ∈ Y : B[v, p] =

∫
Ω

∇y : ∇v + q r dV ∀ v = (v, r) ∈ Y. (5.1b)

Since B is non-symmetric and the right hand sides differ, we need different estima-
tors for (5.1a) and (5.1b).

Discretization. In this example we consider non-discretized control. We let T be
an exact, conforming and shape-regular triangulation of Ω and suppose that the
discrete state space Y(T ) ⊂ Y of continuous, piecewise polynomials of fixed degree
(`y, `q) for velocity and pressure. For the stabilization of the advection derivative
[∇·]b we use a streamline-diffusion finite element method (SDFEM); compare for
instance with [RST08, Chap. IV]. For the SDFEM we use the discrete bilinear form
BT [·,·] = B[·,·]+Bstab[·,·] and the discrete duality pairing 〈·,·〉T = 〈·,·〉Y∗×Y + 〈·,·〉stab
with suitable stabilization terms that are defined next.

For parameters δ > 0 and µ > 0, the stabilized part of the bilinear form is
defined as

Bstab[Y, V ] := δ
∑
T∈T

h2
T

∫
T

(
[∇V ]b +∇R

)
·
(
−∆Y + [∇Y ]b +∇Q

)
dV

+ µ

∫
Ω

divV divY dV.

The discrete state equation reads: for given u ∈ U solve for Y = (Y , Q) ∈ Y(T )
such that

BT [Y, V ] =

∫
Ω

(f + u) · V dV + 〈f + u, V 〉stab,y (5.2a)

for all V = (V , R) ∈ Y(T ), where

〈f + u, V 〉stab,y = δ
∑
T∈T

h2
T

∫
T

(f + u) ·
(
[∇V ]b +∇R

)
dV.

The discrete adjoint problem then reads: for given Y = (Y , Q) solve for P = (P , S)
such that

BT [V, P ] =

∫
Ω

∇Y : ∇V +QRdV + 〈Y, V 〉stab,p (5.2b)

for all V = (V , R) ∈ Y(T ) with

〈Y, V 〉stab,p = δ
∑
T∈T

h2
T

∫
T

∆Y ·
(
[∇V ]b−∇R

)
dV + µ

∫
Ω

Q divV dV.
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In [RST08, Chap. IV, Lemma 3.3] it has been shown that for sufficiently small δ > 0
the discrete bilinear form BT satisfies a discrete inf-sup condition with respect to
the mesh-dependent norm ‖ · ‖2T = ‖ · ‖2Y + ‖ · ‖2stab, where

‖V ‖2stab = ‖(V , R)‖2stab := δ
∑
T∈T

h2
T ‖[∇V ]b +∇R‖2L2(T ) + µ‖ divV ‖2L2(Ω).

Using the inverse estimate hT ‖∇R‖L2(T ) . ‖R‖L2(T ), in combination with the
bound ‖divV ‖L2(Ω) ≤ ‖∇V ‖L2(Ω) we see ‖V ‖stab ≤ C(‖b‖L∞(Ω), δ, µ)‖V ‖Y, The
discrete inf-sup constant β(T ) is bounded from below by β > 0, which solely
depends on δ, µ and the shape regularity of T . Consequently, both (5.2a) and
(5.2b) are uniquely solvable. On top of this, the mesh-dependent norm ‖ · ‖T is
used to prove a priori error estimates for the SDFEM discretization (5.2a) of (5.1a);
compare with [RST08, Chap. IV, Theorem 3.5].

Remark 5.1 (Stable Discretization). Choosing `y ≥ 2 and `q = `y − 1 gives the
Taylor-Hood-Element, which is known to be a stable discretization for the Oseen
problem. The SDFEM not only stabilizes the advection derivative [∇·]b but gives
at the same time a stable discretization not depending on the chosen polynomial
degree for velocity and pressure. In particular, `y = `q = 1 is included, which is
advantageous in optimal control problems for an easy computation of the projection
operator Π: Y(T )→ Uad.

Remark 5.2 (Adjoint Problem). The adjoint problem (5.1b) is the weak form of

−∆p− [∇p]b +∇r = −∆y in Ω, div p = q in Ω, p = 0 on ∂Ω.

This problem is well-posed, since y = (y, q) ∈ Y implies −∆y ∈ H−1(Ω;Rd) and

0 = 〈q, 1〉L2(Ω) =

∫
Ω

q dV =

∫
Ω

div p dV =

∫
∂Ω

p · n dA = 0,

i. e., the source q for divp is compatible with the homogeneous Dirichlet boundary
conditions for p. The same arguments apply to the discrete adjoint problem (5.2b).

It is worth noticing, that (5.2b) is not well-posed for general y = (y, q) but
requires the regularity ∆Y ∈ L2(T ) for all T ∈ T .

5.2. A Posteriori Error Analysis. For non-discretized control we have Eu = 0
by Theorem 3.2. Consequently, the sum of estimators Ey, Ep for the linear problems
(5.1) constitutes an estimator for the optimal control problem. Such estimators are
available for standard discretizations of the Oseen problem, like the Mini-Element,
or the Taylor-Hood-Element; compare for instance with [Ver89]. Up to now, esti-
mators for the SDFEM have not been considered for the Oseen problem. We next
construct estimators Ey and Ep and sketch the proofs of the required properties.

State equation. For ease of notation we write g = f + u and define for T ∈ T
the indicators

E2
y (Y, g;T ) := h2

T ‖ −∆Y + [∇Y ]b +∇Q− g‖2L2(T )

+ hT ‖ [[Y ]] ‖2L2(∂T ) + ‖ divY ‖2L2(T ).

These indicators constitutes an efficient and reliable estimator for the SDFEM
discretization of the state equation.

Proposition 5.3. For given u ∈ U let y ∈ Y be the solution to (5.1a) and Y ∈ Y(T )
be the SDFEM approximation given by (5.2a). Then we have the global upper
bound

‖Y − y‖2Y . E2
y (Y, g; T ) =

∑
T∈T
E2
y (Y, g;T ).
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For any Ȳ = (ȳ, q̄) ∈ Y(T ) we have the local lower bound

E2
y (Ȳ , g;T ) . ‖Ȳ − y‖2ωT (T ) + osc2

y(Ȳ , g;NT (T )) ∀T ∈ T

with osc2
y(Ȳ , g;T ) = h2

T ‖g − gT ‖2L2(T ) + h2
T ‖b − bT ‖2L2(T ), where gT and bT are

suitable finite dimensional approximations of g and b on T .

Proof. 1 Starting point of the analysis is the residual

Resy(Ȳ , g) := B[Ȳ , ·]− 〈g, ·〉 ∈ Y∗,

for Ȳ ∈ Y(T ). Well-posedness of the continuous problem (5.1a) yields for the
solution y the error equivalence

β‖Ȳ − y‖Y ≤ ‖Resy(Ȳ , g)‖Y∗ ≤ ‖B‖‖Ȳ − y‖Y

and it remains to estimate ‖Resy(Ȳ , g)‖Y∗ .
2 For the SDFEM solution Y we have

〈Resy(Y, g), V 〉Y∗×Y = −Bstab[Y, V ] + 〈g, V 〉stab,y =: −〈Resstab(Y, g), V 〉Y∗×Y

for all V ∈ Y(T ), which replaces Galerkin-orthogonality. For given v = (v, r) ∈
Y we let V = (IT v, 0) ∈ Y(T ), where IT denotes the Clément or Scott-Zhang
interpolation operator into the discrete velocity space [Clé75, SZ90]. This in turn
yields

‖Resy(Y, g)‖Y∗ ≤ sup
v∈Y
‖v‖Y=1

〈Resy(Y, g), v − V 〉Y∗×Y

+ C sup
W=(W ,0)∈Y(T )
‖(W ,0)‖Y =1

〈Resstab(Y, g), W 〉,

thanks to ‖V ‖Y ≤ C‖v‖Y.
3 For Stokes, i. e., b ≡ 0, Verfürth has shown

sup
‖v‖Y=1

〈Resy(Y, g), v − V 〉Y∗×Y . Ey(Y, g; T )

where the constant hidden in ‘.’ only depends on properties of IT [Ver89, Theo-
rem 3.1]. The generalization of this bound to Oseen, i. e., b 6≡ 0, is straight forward.
For the stabilization term we easily deduce for W = (W , 0) by the definition of Ey
and ‖ · ‖stab the bound

〈Resstab(Y, g), W 〉 = δ
∑
T∈T

h2
T

∫
T

[∇W ]b ·
(
−∆Y + [∇Y ]b +∇Q− g

)
dV

+ µ

∫
Ω

divW divY dV

≤
√

max{δ, µ}Ey(Y, g; T )
(
‖W‖stab + ‖ divW ‖L2(Ω)

)
.

Since ‖W‖stab + ‖ divW ‖L2(Ω) . ‖W‖Y we have shown the upper bound.

4 The lower bound is the straight forward generalization of the lower bound in
[Ver89, Theorem 3.1] from Stokes to Oseen. �

Adjoint equation. We define for T ∈ T the indicators

E2
p (P,ψ′(Y );T ) := h2

T ‖ −∆(P − Y )− [∇P ]b +∇S‖2L2(T )

+ hT ‖ [[P − Y ]] ‖2L2(∂T ) + ‖ divP − Q‖2L2(T ),

which constitute an efficient and reliable estimator for the SDFEM discretization
of the adjoint equation.
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Proposition 5.4. For given Y ∈ Y(T ) let p ∈ Y be the solution to (5.1b) and
P ∈ Y(T ) be the SDFEM approximation given by (5.2b). Then we have the global
upper bound

‖P − p‖2Y . E2
p (P,ψ′(Y ); T ) =

∑
T∈T
E2
p (P,ψ′(Y );T ).

For any P̄ = (P̄ , S̄) ∈ Y(T ) we have the local lower bound

E2
p (P̄ , ψ′(Y );T ) . ‖P̄ − p‖2ωT (T ) + osc2

p(P̄ , ψ
′(Y );NT (T )) ∀T ∈ T

with osc2
p(P̄ , ψ

′(Y );T ) = h2
T ‖b− bT ‖2L2(T ).

Proof. Follows the proof to Proposition 5.3 based on the residual of the adjoint
problem Resp(P̄ , ψ

′(Y )) := B[·, P̄ ]− 〈ψ′(Y ), ·〉 ∈ Y∗. �

Remark 5.5 (Control Error). If (Û , Ŷ , P̂ ) is the discrete solution of the optimal
control problem (3.2), we know from Theorem 3.2 that

Eocp(Û , Ŷ , P̂ ; T ) = Ey(Ŷ ,f + Û ; T ) + Ep(P̂ , ψ′(Ŷ ); T )

is a reliable and locally efficient estimator for (2.1). For non-discretized control

there is no explicit contribution for the control error ‖Û − û‖L2(Ω). However, the

total error is influenced by the distance of Û to û.
Considering the case f ≡ 0 we see that the oscillation term oscy in the lower

bound becomes hT ‖û− ûT ‖L2(T ) with a suitable finite dimensional approximation
ûT of û. This term encodes approximability of û by discrete functions over T in
H−1. Consequently, approximability of û enters implicitly in the estimator Eocp by

the argument Û of Ey.

Remark 5.6. In [HYZ09] an a posteriori error estimator for a scalar advection
diffusion problem with a simpler objective ψ is derived. Comparing our proof for
the more complex Oseen problem to the proof in [HYZ09] one realizes how much
the abstract framework of §2 and §3 simplifies the a posteriori error analysis, in
particular for non-standard discretizations.

Figure 5.1. Domains and initial triangulation for Experiment 1
(left) and Experiment 2 (right). The domain Γ for the boundary
control is indicated by bold lines.

6. Numerical Experiments

We conclude the article by two numerical experiments in order examine the
quality of the derived estimators and the performance of the standard adaptive loop
(1.1). For this we resort to the diffusion-reaction problem with discretized boundary
control from §4 in two space dimensions. We use piecewise linear finite elements for
the state/adjoint state, and piecewise constant elements for the control. The cost
parameter α is set to 1. We have implemented an adaptive solver for the optimal
control problem in the adaptive finite element toolbox ALBERTA [SS05, SSH+].
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The nonlinear system has been solved by a variant of the primal-dual active set
strategy [HIK02].

6.1. Experiment 1: The Residual Estimator and Marking Strategies. This
experiment is designed to investigate the quality of the residual estimator of Ex-
ample 4.1 and the performance of the adaptive method with different marking
strategies in case of a singlar solution.
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Figure 6.1. Experiment 1: Error and Estimator vs DOFs for the
various strategies. The optimal adaptive decay rate #DOFs−1/2

is indicated by the solid line.

Data of the problem and true solution. We use the example considered in
[MR11] on the L-shaped domain, which is given as Ω = (−1, 1)2 \ ([0, 1)× (−1, 0])
with Γ = ∂Ω; compare with Fig. 5.1. We use constant box-constraints a = −0.5,
b = +0.5 and denote for s ∈ R by Projba(s) the best-approximation of s in [a, b].
Remaining data of the problem is chosen as follows (with x from the respective
domain):

f1(x) := −Proj+0.5
−0.5

(
−|x| 23 cos( 2

3φ(x))
)
,

f2(x) := 0,

yd(x) := −|x| 23 cos( 2
3φ(x)),

g(x) := 2
3 |x|

− 4
3

(
− cos( 2

3φ(x)) · x+ x⊥ sin( 2
3φ(x))

)
· nΓ(x).



A POSTERIORI ERROR ANALYSIS OF OPTIMAL CONTROL PROBLEMS 19

0

0.5

1

1.5

2

2.5

0 5 10 15 20 25 30

EO
C

iterations

AR-1:error
AR-1:estimate

0

0.5

1

1.5

2

2.5

0 5 10 15 20 25 30

EO
C

iterations

AR-2:error
AR-2:estimate

0

0.5

1

1.5

2

2.5

0 5 10 15 20 25 30

EO
C

iterations

AR-3:error
AR-3:estimate

0

0.5

1

1.5

2

2.5

0 5 10 15 20 25 30
EO

C

iterations

AR-4:error
AR-4:estimate

0

0.5

1

1.5

2

2.5

0 5 10 15 20 25 30

EO
C

iterations

AR-5:error
AR-5:estimate

0

0.5

1

1.5

2

2.5

0 2 4 6 8 10

EO
C

iterations

GR-error
GR-estimate

Figure 6.2. Experiment 1: Experimental order of convergence for
the various strategies. The optimal adaptive order 1 is indicated
by the solid line.

Here, φ(x) = arccos
(
|x|−1x · e1

)
is the angle between x and e1, x⊥ = [−x2, x1]T ,

and nΓ is the outer unit normal vector to Ω.
Data is chosen such that the true adjoint state has the typical singularity at the

reentrant corner of Ω. The true solution is given by

ŷ(x) = 0, p̂(x) = |x| 23 cos( 2
3φ(x)), û(x) = Proj+0.5

−0.5

(
−|x| 23 cos( 2

3φ(x))
)
.

Marking strategies. We utilize the residual estimator from Example 4.1. For ease
of notation we omit the discrete solution (Û , Ŷ , P̂ ) as arguments of the indicators

and write Eu(T ), Ey(T ), and Ep(T ) instead of Eu(Û , P̂ ;T ), Ey(Ŷ , Û + f ;T ), and

Ep(P̂ , ψ′(Ŷ );T ). We then use E2
ocp(T ) = E2

u(T ) + E2
y (T ) + E2

p (T ).
We observe that the different contributions Eu, Ey, and Ep of Eocp often differ by

orders of magnitudes. To investigate the effects of the different orders we designed
and used several marking strategies. Basis of all marking strategies is the maxi-
mum strategy : Given a parameter θ ∈ [0, 1] and a set of indicators {E(T )}T∈T the
maximum strategy MS({E(T )}T∈T ) outputs a subset M ⊂ T of marked elements
such

M = {T ∈ T | E(T ) ≥ θEmax} with Emax := max{E(T ) | T ∈ T }.
Two strategies involve all three contributions.

(AR-1) We apply the maximum strategy to Eocp, i. e.,

M = MS({Eocp(T )}T∈T ).
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(AR-1) (AR-2) (AR-3)

(AR-4) (AR-5)

Figure 6.3. Experiment 1: Adaptive grids of iteration 12 for the
various strategies. The approximation of the singularity of p and
the approximation of u is well reflected. It is important to note
that the accuracy of the diverse strategies on these grids is quite
different.

(AR-2) Separately apply the maximum-strategy to all contributions, i. e.,

M = MS({Eu(T )}T∈T ) ∪MS({Ey(T )}T∈T ) ∪MS({Ep(T )}T∈T ).

The other strategies adaptively select particular contributions from {Eu, Ey, Ey} de-
pending on their relative size for marking: For given parameter δ ∈ [0, 1] determine
the index set

Iδ := {i ∈ {u, y, p} | Ei(T ) ≥ δmax{Eu(T ), Ey(T ), Ep(T )}}.
We then proceed as follows.

(AR-3) For T ∈ T set E2(T ) :=
∑
i∈Iδ E

2
i (T ) and apply the maximum strategy to

E , i. e.,
M = MS({E(T )}T∈T ).

(AR-4) Separately apply the maximum strategy to Ei, i ∈ Iδ, i. e.,

M =
⋃
i∈Iδ

MS({Ei(T )}T∈T ).

(AR-5) Apply the maximum strategy to the largest contribution only, i. e., use
strategy (AR-4) with δ = 1. In general, #I1 = 1.

In all experiments we have used the parameters θ = 0.5 for MS, and δ = 0.5 for
(AR-3) and (AR-4). We also compared adaptive refinement to uniform refinement,
which we denote by (GR).

Evaluation of the experiments. We first see from Fig. 6.1 that all adaptive
strategies show an optimal performance in terms of degrees of freedom (DOFs).
This is, the error and estimator decay with rate #DOFs−1/2, which is the best
possible adaptive rate for the H1-error with linear finite elements. Only uniform
refinement leads to the lower rate #DOFs−1/3 as predicted by theory. In the log-log
plots of Fig. 6.1 error and estimator show the same decay.

We next have a closer look at the experimental order of convergence (EOC). For
adaptive refinement we expect an EOC 1 and for uniform refinement an EOC 2

3 .
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Figure 6.4. Experiment 1: ratio error/estimator. The more the
strategy adaptively accounts for the different sizes of the contribu-
tions Eu, Ey, and Ep the more the EOC oscillates.

This is confirmed by the plots in Fig. 6.2. Yet we have the following surprising
observation: The more the strategy adaptively accounts for the different sizes of
the contributions Eu, Ey, and Ep the more the EOC oscillates: For (AR-1), (AR-2),
and (GR) the EOC behaves nicely, whereas for (AR-3), (AR-4), and (AR-5) we see
strong oscillations.

Even more astonishing is the influence of the marking strategy on the ratio of er-
ror and estimator, which is depicted in Fig. 6.4. We first observe that the estimator
has the tendency to underestimates the true error in early stages. Some minimal
resolution seems to be necessary so that the ratio becomes constant. Strategies
(AR-1) and (AR-2) cope quickly with this. Uniform refinement (GR) is not able
to produce the necessary resolution. The adaptive selection of contributions by
(AR-3), (AR-4), and (AR-5) leads to an oscillatory behavior of the ratio.

In Fig. 6.3 we present the adaptive grids of iteration 12 with the different strate-
gies. We see the appropriate refinement accounting on the one hand for the sin-
gularity of the adjoint state at the reentrant corner and on the other hand for the
approximation of the control in the inactive set

I = {0} × [−
√

1/8, 0] ∪ [0,
√

1/8]× {0} ∪ {−1} × [0, 1] ∪ [−1, 0]× {1}.

The error and estimator in this iteration varies for the different strategies. The
true error is approximately 0.0208 for (AR-1), 0.0162 for (AR-2), 0.0212 for (AR-
3), 0.0211 for (AR-4) and 0.0361 for (AR-5).

Summarizing the results of the experiments, we find that the adaptive strategies
(AR-1) and (AR-2) perform well. On the contrary, strategies (AR-3), (AR-4), and
(AR-5) show effects that can turn out to be disadvantageous in applications.

6.2. Experiment 2: Hierarchical Estimator and Active/Inactive Sets.
With this experiment we examine the quality of the hierarchical estimator from
Example 4.2 and the sensitivity of the adaptive method with respect to changes of
the active and inactive sets. Relying on the experience of §6.1 we only use marking
strategy (AR-1).

Data of the problem and true solution. We let Ω = [0, 3]2 and consider a
boundary control supported on Γ = {0} × [1, 2] ( ∂Ω; compare with Fig. 5.1.
We use constant box-constraints a, b = 20, where we vary in the lower bound a.
Remaining data of the problem is chosen as follows (with Z = 10, n = 20, and x
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from the respective domain):

f1(x) := −Proj20
a

(
Z
2n

(
(2n+ 1)( 2

3x2 − 1)− ( 2
3x2 − 1)2n+1

))
f2(x) := e−10|x|2(41− 1600|x|2),

g(x) := 0,

yd(x) := e−10|x|2 − Z
(

2n+1
2n ( 2

3x2 − 1) + 8n+4
9 ( 2

3x2 − 1)2n−1 − ( 2
3x2 − 1)2n+1

)
.

Active Case Mixed Case Inactive Case

Figure 6.5. Experiment 2: Adaptive grids after 10 iterations.
The resolution perfectly matches the different features of (û, ŷ, p̂).

The true solution is

û(x) = Proj20
a

(
Z
2n

(
(2n+ 1)( 2

3x2 − 1)− ( 2
3x2 − 1)2n+1

))
,

ŷ(x) = e−10|x|2 ,

p̂(x) = Z
2n

(
(2n+ 1)( 2

3x2 − 1)− ( 2
3x2 − 1)2n+1

)
and has the following particular features. An adaptive approximation of the respec-
tive components û, ŷ, p̂ requires local refinement in different regions of the domain.
The true state ŷ needs a high resolution close to the origin due to shape of a narrow
exponential peak. The adjoint state p̂ is constant in x1. In x2 it is almost linear
for x2 ∈ [0.2, 2.8] with a sharp boundary layer close to x2 = 0 and x2 = 3, which
calls for refinement. Properties of the control û vary with the parameter a, where
we consider three cases:

Inactive Case: For a = −20 we have a ≤ −p̂ ≡ û ≤ b on Γ.

Active Case: For a = 15 we have −p̂ ≤ b and û ≡ a on Γ.

Mixed Case: For a = 0 we have a ≤ −p̂ = û ≤ b for x2 ∈ [1, 1.5], and −p̂ ≤ a and
û ≡ a for x2 ∈ [1.5, 2].

Approximation of û only requires refinement in the inactive set I, which is I=∅ in
the Active Case, I={0}×[1, 1.5] in the Mixed Case, and I=Γ in the Inactive Case.

Evaluation of the experiments. In Fig. 6.5 we have depicted the adaptive grids
of the 10th iteration for the three different cases. The resolution for ŷ and p̂ is
as we expected it and is nearly the same in all scenarios. The refinement for û is
confined to the true inactive set. This indicates that the estimator is not sensitive
with respect to changes in the active/inactive sets.

This is also confirmed by Figs. 6.6 and 6.7. In Fig. 6.6 we have depicted the
decay of error and estimator vs. #DOFs for adaptive and uniform refinement.
Both, error and estimator decay with the optimal rate #DOFs−1/2 and the lines
look similar for all three cases. Here, uniform refinement also exhibits the optimal
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Figure 6.6. Experiment 2: Decay of error and estimator vs
#DOFs for the three different cases for adaptive and uniform re-
finement. The behavior is not sensitive with respect to changes in
the active/inactive sets.

decay #DOFs−1/2 since the true solution (û, ŷ, p̂) is regular. Variations of the er-
ror/estimator ratios plotted in Fig. 6.7 are small when changing the active/inactive
sets. We observe that the estimator underestimates the true error (by an almost
constant factor). This is typical for the hierarchical estimator.

We close this discussion with a remark on further estimates of the indicator Eu.

Remark 6.1. In all our experiments we have used Eu(Û , P̂ ; T ) = ‖Û − Π(P̂ )‖U
as indicator for the control error. The exact computation of Eu is involved since
(Π(P̂ ))|T∩Γ is a piecewise affine function over T ∩ Γ rather than an affine function
on T ∩ Γ. None the less, using a suitable decomposition of T ∩ Γ the indicator
E(Û , P̂ ;T ) can be computed exactly. Moreover, Theorem 3.2 states that this term
is globally efficient.

In order to simplify computations, the term Eu is often estimated further. Liu
and Yan propose in [LY01] to use the bound ‖Û −Π(P̂ )‖U ≤ ‖Û + 1

α P̂‖U. Denoting
by MT : U → U(G) the best-approximation in L2, Hintermüller et al. suggest in

[HHIK08] to use the estimate ‖Û −Π(P̂ )‖U . ‖P̂ −MT P̂‖Y.
Using one of these bounds as indicator for the control error does not lead to a

localization of refinement to the inactive set. In fact, we always observe a refinement
of whole Γ in all three cases. This shows, that neither ‖Û+ 1

α P̂‖U nor ‖P̂ −MT P̂‖Y
can be efficient for our error notion ‖Û − û‖U + ‖Ŷ − ŷ‖Y + ‖P̂ − p̂‖Y. Efficiency of
the estimator is a prerequisite for an optimal performance of an adaptive method;
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Figure 6.7. Experiment 2: Ratio of error/estimator vs #DOFs
for the three different cases. The behavior is not sensitive with
respect to changes in the active/inactive sets.

compare with [CKNS08, §5]. We therefore conclude that the additional effort for

computing ‖Û −Π(P̂ )‖U exactly pays off.

Efficiency for ‖Û + 1
α P̂‖U or ‖P̂ −MT P̂‖Y can be re-established by introducing

slack-variables for the control constraints and including these slack-variables in the
error notion. Even though the emanating estimator is then efficient with respect
to this new error notion, the refinement of whole Γ will persist in all three cases.

References

[AO00] Mark Ainsworth and J. Tinsley Oden, A posteriori error estimation in finite element

analysis, Wiley-Interscience, New York, 2000.
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2011-004 Scherer, C.W.; Köse, I.E.: Control Synthesis using Dynamic D-Scales: Part II —
Gain-Scheduled Control

2011-003 Scherer, C.W.; Köse, I.E.: Control Synthesis using Dynamic D-Scales: Part I —
Robust Control

2011-002 Alexandrov, B.; Semmelmann, U.: Deformations of nearly parallel G2-structures

2011-001 Geisinger, L.; Weidl, T.: Sharp spectral estimates in domains of infinite volume

2010-018 Kimmerle, W.; Konovalov, A.: On integral-like units of modular group rings

2010-017 Gauduchon, P.; Moroianu, A.; Semmelmann, U.: Almost complex structures on
quaternion-Kähler manifolds and inner symmetric spaces

2010-016 Moroianu, A.; Semmelmann,U.: Clifford structures on Riemannian manifolds

2010-015 Grafarend, E.W.; Kühnel, W.: A minimal atlas for the rotation group SO(3)

2010-014 Weidl, T.: Semiclassical Spectral Bounds and Beyond

2010-013 Stroppel, M.: Early explicit examples of non-desarguesian plane geometries

2010-012 Effenberger, F.: Stacked polytopes and tight triangulations of manifolds

2010-011 Györfi, L.; Walk, H.: Empirical portfolio selection strategies with proportional
transaction costs
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