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In the current paper we obtain discrepancy estimates in exponential Orlicz
and BMO spaces in arbitrary dimension d ≥ 3. In particular, we use dyadic
harmonic analysis to prove that for the so-called digital nets of order 2 the
BMOd and exp

(
L2/(d−1)) norms of the discrepancy function are bounded

above by (logN)
d−1

2 . The latter bound has been recently conjectured in
several papers and is consistent with the best known low-discrepancy con-
structions. Such estimates play an important role as an intermediate step
between the well-understood Lp bounds and the notorious open problem of
finding the precise L∞ asymptotics of the discrepancy function in higher
dimensions, which is still elusive.
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1 Introduction and results

1.1 Definitions

The main object of the present paper is the discrepancy function. For a positive integer
N let PN be a point set in the unit interval [0, 1)d with N points. The discrepancy
function is defined as

DPN (x) =
∑
z∈PN

χ[0,x)(z)−Nx1 · · ·xd

where x = (x1, . . . , xd) ∈ [0, 1)d and [0, x) = [0, x1)× . . .× [0, xd). By χA we denote the
characteristic function of a set A ∈ Rd, so the term CPN (x) =

∑
z χ[0,x)(z) is equal to

the number of points of PN in the interval [0, x). Hence, DPN measures the deviation of
the number of points of PN in [0, x) from the fair number of points LN (x) = N |[0, x)| =
N x1 · · ·xd, which would be achieved by a (practically impossible) perfectly uniform
distribution of points, thus quantifying the extent of equidistribution of the point set
PN and its quality for numerical integration (quasi-Monte Carlo methods, se e.g. [15]).
Asymptotic behavior of the discrepancy function in Lp([0, 1)d)-spaces for 1 < p < ∞

is well understood. The classical lower bound proved by Roth [33] for p = 2 and by
Schmidt [36] for arbitrary 1 < p <∞ states that there exists a constant c = c(p, d) > 0
such that for every positive integer N and all point sets PN in [0, 1)d with N points, we
have ∥∥∥DPN |Lp([0, 1)d)

∥∥∥ ≥ c (logN)(d−1)/2 . (1)

The best known value for c in L2 can be found in [23]. Furthermore, these estimates
are known to be sharp, i.e. there exists a constant C = C(p, d) > 0 such that for every
positive integer N , there is a point set PN in [0, 1)d with N points such that∥∥∥DPN |Lp([0, 1)d)

∥∥∥ ≤ C (logN)(d−1)/2 . (2)

This was proved by Davenport [11] for p = 2, d = 2, by Roth [34] for p = 2 and arbitrary
d, and finally by Chen [8] in the general case. The best known value for C in L2 can be
found in [15] and [18].
The precise asymptotics of the L∞([0, 1)d)-norm of the discrepancy function (star-

discrepancy) is known as the great open problem in discrepancy theory [2]. The best
currently known lower bound in dimensions d ≥ 3 was obtained quite recently [5]. There
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exists a constant c = c(d) > 0 such that for every positive integer N and all point sets
PN in [0, 1)d with N points, we have∥∥∥DPN |L∞([0, 1)d)

∥∥∥ ≥ c (logN)(d−1)/2+ηd (3)

where 0 < ηd < 1/2. At the same time, the bound in the plane is well known ([35])∥∥∥DPN |L∞([0, 1)2)
∥∥∥ ≥ c logN. (4)

Furthermore (e.g., [22]), there exists a constant C > 0 such that for every positive integer
N , there is a point set PN in [0, 1)d with N points such that∥∥∥DPN |L∞([0, 1)d)

∥∥∥ ≤ C (logN)d−1 . (5)

One can observe a gap between the known upper and lower bounds for the star dis-
crepancy in dimensions d ≥ 3. There is no agreement among the experts as to what
should be the correct asymptotics in higher dimension, the two main conjectures being
(logN)d−1 and (logN)d/2. We refer the reader e.g. to [3] for a more detailed discussion.

1.2 Main results

Since the precise behavior of discrepancy in Lp-spaces (1 < p <∞) is known, while the
L∞ estimates remain elusive, it is natural and instructive to investigate what happens in
intermediate spaces “close” to L∞. Standard examples of such spaces are the exponential
Orlicz spaces and (various versions of) BMO, which stands for bounded mean oscillation.
In harmonic analysis, these spaces often play a role of a natural substitute for L∞ as an
endpoint of the Lp scale. We refer the reader to the next section for precise definitions
and references.
This approach was initiated in [4] in the case of dimension d = 2. Examples used to

prove upper bounds in the two-dimensional case were constructed as modifications of
the celebrated Van der Corput set. In higher dimensions we resort to the higher-order
digital nets – a concept introduced by Dick [12], [13] and studied from the relevant point
of view in [16], [14], and [29]. In particular, we strongly rely on the estimates of the Haar
coefficients of the discrepancy function for such nets (see Lemma 3.1) recently obtained
by the second author [29].
The first main result of this work is the following upper bound.

Theorem 1.1. For any dimension d ≥ 3 there exists a constant C = C(d) > 0 such
that for every positive integer N , there is a point set PN in [0, 1)d with N points such
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that ∥∥∥DPN |BMOd
∥∥∥ ≤ C (logN)(d−1)/2 . (6)

This result is known in the plane (see [4, Theorem 1.7]), moreover, it is sharp. A
simple modification of the proof of (1) yields the corresponding lower bound.

Theorem 1.2. For any dimension d ≥ 3 there exists a constant c = c(d) > 0 such that
for every positive integer N and all point sets PN in [0, 1)d with N points we have∥∥∥DPN |BMOd

∥∥∥ ≥ c (logN)(d−1)/2 . (7)

These results say that in the case of discrepancy function, the BMO norm behaves
more like Lp rather than like L∞.

Furthermore, we extend the result of [4, Theorem 1.4] on exponential Orlicz spaces
to the case of arbitrary dimension. The main theorem we prove in this direction is the
following.

Theorem 1.3. In any dimension d ≥ 3, there exists a constant C = C(d) > 0 such that
for every positive integer N , there is a point set PN in [0, 1)d with N points, for which∥∥∥∥DPN ∣∣∣∣ exp

(
L

2
d−1
)∥∥∥∥ ≤ C (logN)

d−1
2 . (8)

Some remarks are in order for this theorem. This bound has been recently conjec-
tured in several different sources. A similar (albeit weaker) estimate has been recently
proved for the so-called Chen–Skriganov nets independently in [38] and [1] for the smaller
exp

(
L2/(d+1)) norm. The authors of both papers conjectured that it should be improved

to the exp
(
L2/(d−1)) estimate stated above, in addition, the same conjecture has been

made in the survey paper [17, Section 9]. However, until now this claim remained un-
proved.
The exponential integrability exponent 2/(d − 1) is quite natural for a variety of

reasons. First, it is consistent with the general ideology that the problem effectively has
d− 1 “free parameters” (see [3] for a detailed discussion) and therefore the Littlewood–
Paley inequalities should be applied d − 1 times: see §2.2, in particular, estimate (13)
of Lemma 2.1. Furthermore, this estimate is consistent with the L∞-discrepancy bound
(5) of the order (logN)d−1 valid for digital nets, see §3.5.
For this very reason the complementary lower bound is presently beyond reach. There
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are indications that it should be almost as difficult as one of the main open problems in
the subject – the lower bound of the L∞-discrepancy. The proof of the corresponding
lower bound in dimension d = 2 ([4, Theorem 1.4]) uses techniques similar to the proof
of the two-dimensional L∞ bound (4), which are not available in higher dimensions.
Besides, if one believes that the correct L∞ bound is (logN)d/2, then estimate (8) will
probably not be sharp – in this case the norm on the left-hand side should be the
subgaussian exp(L2), see §3.5 for details.
During the final stages of preparation of the present manuscript, we have learned about

a recent preprint of Skriganov [39] written almost simultaneously, where inequality (8)
is proved for random digit shifts of an arbitrary digital (t, n, d)-net (although the author
doesn’t state the result in exponential form, but instead writes down Lp estimates with
explicit dependence on p). The techniques of Skriganov’s work exploit randomness in a
crucial way. In contrast, our proof is deterministic and is applicable to any higher order
digital net (in fact, it suffices to take order σ = 2). Concrete construction of such nets
are given, e.g., in [14].
Interpolating the estimate of Theorem 1.3 with the well-known L∞ bound (5) we

obtain the following result, which is a direct analog of [4, Theorem 1.4].

Corollary 1.4. For each β satisfying 2
d−1 ≤ β < ∞, there exists a constant Cβ > 0

such that for every positive integer N , there is a point set PN in [0, 1)d with N points
such that ∥∥∥DPN | exp(Lβ)

∥∥∥ ≤ Cβ (logN)(d−1)− 1
β . (9)

Since this result is even more closely tied to the L∞ estimates, no corresponding lower
bounds are available.
Our strategy resonates with that of [4], but we also strongly rely on very recent results

and constructions: digital nets of higher order [12], [13] and their explicit constructions
[14], [17], Haar expansions of the discrepancy function of such nets used in the study
of discrepancy in Besov spaces with dominating mixed smoothness and in L2, see [16],
[17], [14], [29]. For further results on this topic see [9], [10], [20], [26], [27], [37], [41]. As
general references for studies of the discrepancy function we refer to the monographs [2],
[15], [24], [30], [32] and surveys [3], [21], [28].
We shall write A � B if there exists an absolute constant c > 0 such that A ≤ cB.

We write A ' B if A � B and B � A. The implicit constants in this paper do not
depend on the number of points N (but may depend on some other parameters, such as
dimension, integrability index etc).
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2 Preliminary facts

2.1 Haar bases

We denote N−1 = N0 ∪ {−1}. Let Dj = {0, 1, . . . , 2j − 1} for j ∈ N0 and D−1 = {0}.
For j = (j1, . . . , jd) ∈ Nd−1 let Dj = Dj1 × . . . × Djd . For j ∈ Nd−1 we write |j| =
max(j1, 0) + . . .+ max(jd, 0).
For j ∈ N0 and m ∈ Dj we call the interval Ij,m =

[
2−jm, 2−j(m+1)

)
the m-th dyadic

interval in [0, 1) on level j. We put I−1,0 = [0, 1) and call it the 0-th dyadic interval in
[0, 1) on level −1. Let I+

j,m = Ij+1,2m and I−j,m = Ij+1,2m+1 be the left and right half of
Ij,m, respectively.
For j ∈ Nd−1 and m = (m1, . . . ,md) ∈ Dj we call Ij,m = Ij1,m1 × . . . × Ijd,md the

m-th dyadic interval in [0, 1)d at level j. We call the number |j| the order of the dyadic
interval Ij,m. Its volume is then |Ij,m| = 2−|j|.
An important combinatorial fact is that #{j ∈ Nd0 : |j| = n} ' nd−1, where # stands

for the cardinality of a set.
Let j ∈ N0 and m ∈ Dj . Let hj,m be the function on [0, 1) with support in Ij,m and

constant values 1 on I+
j,m and −1 on I−j,m. We put h−1,0 = χI−1,0 on [0, 1). Notice that

we normalize the Haar functions in L∞, rather than L2.
Let j ∈ Nd−1 and m ∈ Dj . The function hj,m given as the tensor product

hj,m(x) = hj1,m1(x1) · · ·hjd,md(xd)

for x = (x1, . . . , xd) ∈ [0, 1)d is called a dyadic Haar function on [0, 1)d. The set of
functions {hj,m : j ∈ Nd−1, m ∈ Dj} is called dyadic Haar basis on [0, 1)d.
It is well known that the system{

2
|j|
2 hj,m : j ∈ Nd−1, m ∈ Dj

}

is an orthonormal basis in L2([0, 1)d), an unconditional basis in Lp([0, 1)d) for 1 < p <∞,
and a conditional basis in L1([0, 1)d).

2.2 Littlewood–Paley inequalities

For any function f ∈ L2([0, 1)d) we have Parseval’s identity∥∥∥f |L2([0, 1)d)
∥∥∥2

=
∑
j∈Nd−1

2|j|
∑
m∈Dj

|〈f, hj,m〉|2. (10)
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Littlewood–Paley inequalities are a generalization of this statement to Lp-spaces. For a
function f : [0, 1]d → R, the (dyadic) Littlewood–Paley square function is defined as

Sf(x) =
( ∑
j∈Nd−1

22|j| ∑
m∈Dj

|〈f, hj,m〉|2 χIj,m

)1/2

.

It is a classical fact and a natural extension of (10) that in dimension d = 1, the Lp-norm
of f can be characterized using the square function, i.e. for each 1 < p <∞ there exist
constants Ap, Bp > 0 such that

Ap‖Sf‖Lp ≤ ‖f‖Lp ≤ Bp‖Sf‖Lp . (11)

Two remarks are important. First, it is well known that Bp '
√
p. Second, estimates

(11) continue to hold for Hilbert space-valued functions f . This allows one to extend
the inequalities to the case of multivariate functions f : [0, 1]d → R by iterating the
one-dimensional estimates d times, thus picking up constants Adp and Bd

p ' pd/2.
However, if the function f is represented by a hyperbolic sum of Haar wavelets, i.e. a

sum of Haar functions supported by intervals of fixed order, f ∈ span{hj,m : |j| = n}, in
other words, when the number of “free parameters” is d − 1, then the one-dimensional
Littlewood–Paley inequalities (11) only need to be applied d−1 times, yielding constants
Ad−1
p and Bd−1

p ' p
d−1

2 . We summarize the estimates useful for our purposes in the
following lemma.

Lemma 2.1. Let 1 < p <∞.

(i) Multiparameter Littlewood–Paley inequality: For a function f : [0, 1]d → R we
have ∥∥∥f |Lp([0, 1)d)

∥∥∥ � p d2 ∥∥∥Sf |Lp([0, 1)d)
∥∥∥ . (12)

(ii) Hyperbolic Littlewood–Paley inequality: Assume that f : [0, 1]d → R is a hyperbolic
sum of Haar functions, i.e. f ∈ span{hj,m : |j| = n} for some n ∈ N. Then∥∥∥f |Lp([0, 1)d)

∥∥∥ � p d−1
2

∥∥∥Sf |Lp([0, 1)d)
∥∥∥ . (13)

A more detailed discussion of the Littlewood–Paley inequalities and their applications
in discrepancy theory can be found in [3].
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2.3 Bounded mean oscillation and exponential Orlicz spaces

There are different definitions of the space of functions of bounded mean oscillation in
the multivariate case. The appropriate version in our setting is the so-called product
(Chang–Feffermann) BMOd introduced in [6]. For an integrable function f : [0, 1]d → R
we define

∥∥∥f |BMOd
∥∥∥ = sup

U⊂[0,1)d

|U |−1 ∑
j∈Nd0

2|j|
∑
m∈Dj
Ij,m⊂U

|〈f, hj,m〉|2


1/2

. (14)

The space BMOd contains all integrable functions f with a finite norm
∥∥∥f |BMOd

∥∥∥.
Notice that technically

∥∥∥f |BMOd
∥∥∥ is only a seminorm, since it vanishes on linear com-

binations of functions, which are constant in some of the coordinate directions, therefore
formally we need to take a factor space over such functions.
To give some intuition behind this definition, we notice that when d = 1 and U is a

dyadic interval, we have by Parseval’s identity

|U |−1 ∑
j∈N0

2|j|
∑
m∈Dj
Ij,m⊂U

|〈f, hj,m〉|2 = |U |−1
∫
U

∣∣∣f − 〈f〉U ∣∣∣2dx,

where 〈f〉U is the mean of f over U – this is precisely the expression which arises in
the definition of the one-dimensional BMO-space. The precise technical definition of the
norm (14) turns out to be the correct multiparameter dyadic extension, which preserves
the most natural properties of BMO, in particular, the celebrated H1 − BMO duality.

In order to introduce the definition of the exponential Orlicz spaces, we start by briefly
discussing general Orlicz spaces. We refer to [25] for more information. Let (Ω, P ) be a
probability space and let E denote the expectation over (Ω, P ). Let ψ : [0,∞)→ [0,∞)
be a convex function, such that ψ(x) = 0 if and only if x = 0. For a (Ω, P )-measurable
real valued function f we define∥∥∥f |Lψ∥∥∥ = inf{K > 0 : Eψ(|f |/K) ≤ 1},

where inf ∅ = ∞. The Orlicz space (associated with ψ) Lψ contains functions f with
finite norm

∥∥∥f |Lψ∥∥∥.
Let α > 0 and let ψα be a convex function which equals exα −1 for x sufficiently large,
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depending upon α (for α ≥ 1 this function may be used for all x ≥ 0). We denote
exp(Lα) = Lψα .
The following proposition yields a standard way to compute the exp(Lα) norms. Its

proof is a simple application of Taylor’s series for ex and Stirling’s formula.

Proposition 2.2. For any α > 0, the following equivalence holds

‖f | exp(Lα)‖ ' sup
p>1

p−
1
α ·
∥∥∥f |Lp([0, 1)d)

∥∥∥ . (15)

The next proposition is a variant of the famous Chang–Wilson–Wolff inequality [7]
which states that boundedness of the square function implies certain exponential inte-
grability of the original function. The hyperbolic version presented here can be easily
deduced from the Littlewood–Paley inequality with sharp constants (13) and the previ-
ous proposition.

Proposition 2.3 (Hyperbolic Chang–Wilson–Wolff inequality). Assume that f is a
hyperbolic sum of multiparameter Haar functions, i.e. f ∈ span{hj,m : |j| = n} for
some n ∈ N. Then ∥∥∥f | exp

(
L2/(d−1))∥∥∥ � ∥∥∥S(f)|L∞([0, 1)d)

∥∥∥ . (16)

Proof. According to (13), we have ‖f‖Lp � p
d−1

2 ‖S(f)‖Lp ≤ p
d−1

2 ‖S(f)‖L∞ . Estimate
(16) now follows from (15). �

We note that it is important here that the function f is a linear combination of Haar
functions supported by rectangles of fixed volume: without this assumption the correct
norm in the left-hand side would have been exp

(
L2/d) which can be deduced from (12).

For all 1 ≤ p < ∞ we have L∞ ⊂ exp(Lα) ⊂ Lp. Furthermore, it is obvious that
‖f | exp(Lα)‖ �

∥∥∥f | exp(Lβ)
∥∥∥, i.e. exp(Lβ) ⊂ exp(Lα), for α < β. The next lemma

shows that if we assume that f ∈ L∞, the relation may be reversed. The argument is a
simple interpolation between exponential Orlicz spaces and L∞.

Proposition 2.4. Let 0 < α < β < ∞. Consider a function f ∈ L∞([0, 1)d). If
f ∈ exp(Lα), then also f ∈ exp(Lβ) and we have

∥∥∥f | exp(Lβ)
∥∥∥ � ∥∥∥f | exp(Lα)

∥∥∥α/β · ∥∥∥f |L∞([0, 1)d)
∥∥∥1−α/β

.
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Proof. Set q = α
β p. Then we have ‖f‖Lp ≤ ‖f‖

α/β
Lq
· ‖f‖1−α/βL∞

and

∥∥∥f | exp(Lβ)
∥∥∥ ' sup

p>1
p
− 1
β · ‖f‖Lp ≤ sup

p>1
p
− 1
β · ‖f‖α/βLq

· ‖f‖1−α/βL∞

� sup
q>1

(
q−

1
α · ‖f‖Lq

)α/β
· ‖f‖1−α/βL∞

,

which finishes the proof. �

2.4 Digital nets

Our next step is to define digital (t, n, d)-nets of order σ ≥ 1. The original definition of
digital nets goes back to Niederreiter [31], and the first constructions were given even
earlier by Sobol’ [40]. The concept of higher-order digital nets was introduced in [12],
[13]. We quote the definitions from [12] and [13, Definitions 4.1, 4.3]. In the case of
order σ = 1, the original definition of digital nets is recovered.
For n, σ ∈ N let C1, . . . , Cd be σn×n matrices over F2. For ν ∈ {0, 1, . . . , 2n−1} with

the binary expansion ν = ν0 + ν12 + . . .+ νn−12n−1 with digits ν0, ν1, . . . , νn−1 ∈ {0, 1},
the binary digit vector ν̄ is given as ν̄ = (ν0, ν1, . . . , νn−1)> ∈ Fn2 . Then we compute
Ciν̄ = (xi,ν,1, xi,ν,2, . . . , xi,ν,σn)> ∈ Fσn2 for 1 ≤ i ≤ d. Finally we define

xi,ν = xi,ν,12−1 + xi,ν,22−2 + . . .+ xi,ν,σn2−σn ∈ [0, 1)

and xν = (x1,ν , . . . , xd,ν). We call the point set P2n = {x0, x1, . . . , x2n−1} a digital net
(over F2).
Now let 0 ≤ t ≤ σn be an integer. For every 1 ≤ i ≤ d we write Ci = (ci,1, . . . , ci,σn)>

where ci,1, . . . , ci,σn ∈ Fn2 are the row vectors of Ci. If for all 1 ≤ λi,1 < . . . < λi,ηi ≤
σn, 1 ≤ i ≤ d with

λ1,1 + . . .+ λ1,min(η1,σ) + . . .+ λd,1 + . . .+ λd,min(ηd,σ) ≤ σn− t

the vectors c1,λ1,1 , . . . , c1,λ1,η1
, . . . , cd,λd,1 , . . . , cd,λd,ηd are linearly independet over F2, then

P2n is called an order σ digital (t, n, d)-net (over F2).
The smaller the quality parameter t and the greater the order σ, the better structure

the point set has. In particular every point set P2n constructed with the digital method
is at least an order σ digital (σn, n, d)-net. Every order σ2 digital (t, n, d)-net is an order
σ1 digital (dtσ1/σ2e, n, d)-net if 1 ≤ σ1 ≤ σ2 (see [12]). It is well known that digital
(t, n, d)-nets are perfectly distributed with respect to dyadic intervals (in the standard
terminology, see e.g. [15], order 1 digital (t, n, d)-nets are (t, n, d)-nets): every dyadic
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interval of order n − t contains exactly 2t points of the (t, n, d)-net. A version of this
property continues to hold for higher-order nets.

Lemma 2.5. Let P2n be an order σ digital (t, n, d)-net, then every dyadic interval of
order n contains at most 2dt/σe points of P2n.

It is a classical fact that such sets satisfy the best known star discrepancy estimate
(5), see [15, Theorem 5.10].

Lemma 2.6. Let P2n be an order σ digital (t, n, d)-net, then∥∥∥DP2n |L∞([0, 1)d)
∥∥∥ � nd−1. (17)

Constructions of order σ digital (t2, n, d)-nets can be obtained via so-called digit in-
terlacing of order 1 digital (t1, n, σd)-nets and several constructions of order 1 digital
nets are known. For details, examples and further literature we refer to [17] and [14].
We only point out here that there are constructions with a good quality parameter t,
which in particular does not depend on n.

3 Proofs of the theorems

We will prove the main theorems in the case when the number of points is a power of
two, i.e. N = 2n. The reduction to the general case is standard, see e.g. §6.3 in [4].
Our examples are the higher-order digital nets described in the previous section with
the minimal non-trivial value of the order σ = 2.
We shall rely on the recent estimates of the Haar coefficients of the discrepancy func-

tion of order 2 digital nets obtained by the sec on author. The following result is
[29, Lemma 5.9].

Lemma 3.1. Let P2n be an order 2 digital (t, n, d)-net. Let j ∈ Nd−1 and m ∈ Dj.

(i) If |j| ≥ n − dt/2e, then |〈DP2n , hj,m〉| � 2−|j| and |〈DP2n , hj,m〉| � 2−2|j|+n for all
but 2n values of m.

(ii) If |j| < n− dt/2e, then |〈DP2n , hj,m〉| � 2−n (2n− t− 2|j|)d−1.

In fact, we shall mostly need the second part of this lemma, i.e. the Haar coefficients
for small values of |j| (in other words, for large intervals). If we compare this estimate
to the corresponding two-dimensional bound for the Van der Corput set obtained in
[4, Lemma 4.1], which stated that |〈DP2n , hj,m〉| � 2−n, we see that in our case we have
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an additional logarithmic factor. It is however completely harmless as one can see from
the following elementary computation.

Lemma 3.2. Let K be a positive integer, A > 1, and q, r > 0. Then we have

K−1∑
k=0

Ak (K − k)q kr � AK Kr,

where the implicit constant is independent of K.

Proof. We have

K−1∑
k=0

Ak (K − k)q kr ≤ AK Kr
K−1∑
k=0

Ak−K (K − k)q = AK Kr
K∑
k=1

A−k kq � AK Kr.

�

We now turn to the proofs of the main theorems, which are similar in spirit to the
arguments in [4].

3.1 Proof of Theorem 1.1

Let P2n be an order 2 digital (t, n, d)-net with the quality parameter t depending only
on the dimension d. We recall that #{j ∈ Nd0 : |j| = n} ' nd−1 and #Dj = 2|j|. We fix
an arbitrary measurable set U ⊂ [0, 1)d. We need to prove

|U |−1 ∑
j∈Nd0

2|j|
∑
m∈Dj
Ij,m⊂U

|〈DP2n , hj,m〉|
2 � nd−1.

We split the sum above into three cases: large, intermediate, and small intervals, ac-
cording to the cases in Lemma 3.1. We observe that, in each case, there are at most
2|j||U | values of m ∈ Dj such that Ij,m ⊂ U .
Starting with large intervals, we apply (ii) of Lemma 3.1 and Lemma 3.2 to obtain

|U |−1 ∑
j∈Nd0

|j|<n−dt/2e

2|j|
∑
m∈Dj
Ij,m⊂U

|〈DP2n , hj,m〉|
2

� |U |−1 ∑
j∈Nd0

|j|<n−dt/2e

2|j| 2|j||U | 2−2n (2n− t− 2|j|)2(d−1)



13

≤ 2−2n
n−t/2−1∑
k=0

22k (2n− t− 2k)2(d−1) (k + 1)d−1

� 2−2n 22n (n− t/2)d−1 � nd−1.

Next, we consider intermediate intervals and apply (i) of Lemma 3.1 to obtain

|U |−1 ∑
j∈Nd0

n−dt/2e≤|j|<n

2|j|
∑
m∈Dj
Ij,m⊂U

|〈DP2n , hj,m〉|
2

� |U |−1 ∑
j∈Nd0

n−dt/2e≤|j|<n

2|j| 2|j||U | 2−2|j|

≤
n−1∑

k=n−dt/2e
(k + 1)d−1 � nd−1.

We now turn to the case of small intervals, where |j| ≥ n. These boxes are too small
to capture any cancellation, hence we will treat the linear and counting parts of the
discrepancy function separately. The case of the linear part LP2n (x) = 2nx1 · . . . · xd is
simple. It is easy to verify that |〈LP2n , hj,m〉| ' 2−2|j|+n, thus we obtain

|U |−1 ∑
j∈Nd0
|j|≥n

2|j|
∑
m∈Dj
Ij,m⊂U

|〈LP2n , hj,m〉|
2

� |U |−1 ∑
j∈Nd0
|j|≥n

2|j| 2|j||U | 2−4|j|+2n

≤ 22n
∞∑
k=n

2−2k (k + 1)d−1 � nd−1.

Estimating the counting part CP2n is a bit more involved. Let J denote the family of
all dyadic intervals Ij,m ⊂ U with |j| ≥ n and such that 〈CP2n , hj,m〉 6= 0. Consider the
subfamily J̃ ⊂ J , which consists of maximal (with respect to inclusion) dyadic intervals
in J . We first demonstrate the following fact, which provides control of the total size of
the intervals in this family

∑
Ij,m∈J̃

|Ij,m| =
∑

Ij,m∈J̃

2−|j| � nd−1|U |. (18)

Indeed, consider an interval Ij,m ∈ J . Since 〈CP2n , hIj,m〉 6= 0, this implies that at
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least one point z ∈ P2n must be contained in the interior of Ij,m, which in turn means
that each side of Ij,m has length at least 2−2n (since P2n is an order 2 digital net, whose
points have binary coordinates of length 2n), i.e. 0 ≤ jk ≤ 2n for k = 1, . . . , d.
Fix integer parameters r1,. . . ,rd−1 between 0 and 2n. Consider the family J̃r1,...,rd−1 ⊂
J̃ consisting of those intervals Ij,m ∈ J̃ for which jk = rk for k = 1, . . . , d − 1, i.e. the
lengths of their first d−1 sides are fixed. Then all intervals in this family are disjoint: if
two of them intersected, then their first d−1 sides would have to coincide, and hence one
would have to be contained in the other, which would contradict maximality. Therefore,
we find that

∑
Ij,m∈J̃

2−|j| =
2n∑

r1,...,rd−1=0

∑
Ij,m∈J̃r1,...,rd−1

∣∣Ij,m∣∣ ≤ 2n∑
r1,...,rd−1=0

|U | � nd−1|U |,

which proves (18).
For a dyadic interval J , we define

CJP2n
(x) =

∑
z∈P2n∩J

χ[0,x)(z),

i.e. the part of the counting function, which counts only the points from J . It is clear
that 〈CP2n , hj,m〉 = 〈CJP2n

, hj,m〉 whenever Ij,m ⊂ J .
We recall Lemma 2.5 which implies that any dyadic interval of volume at most 2−n

contains no more than 2dt/2e points. Therefore, for any interval J ∈ J̃ we have

∥∥CJP2n

∥∥
L2(J) ≤

∑
p∈P2n∩J

∥∥χ[0,·)(z)
∥∥
L2(J) ≤ 2dt/2e|J |

1
2 . (19)

Using the orthogonality of Haar functions, Bessel inequality, (19), and (18), we find that

|U |−1 ∑
Ij,m∈J

2|j||〈CP2n , hj,m〉|
2 ≤ |U |−1 ∑

J∈J̃

∑
Ij,m⊂J

2|j||〈CJP2n
, hj,m〉|2

≤ |U |−1 ∑
J∈J̃

∥∥CJP2n

∥∥2
L2(J) ≤ |U |

−1 2t+1 ∑
J∈J̃

|J | � nd−1,

which concludes the proof for small intervals and therefore proves Theorem 1.1.

3.2 Proof of Theorem 1.2

We now turn to the proof of the matching lower bound for the space BMOd. The proof
is a simple adaptation of the ideas of the original proof [33] of the lower bound for the
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L2-discrepancy (1). Fix an arbitrary point set PN ⊂ [0, 1)d with N points. Choose the
scale n ∈ N so that 2N ≤ 2n < 4N . This choice guarantees that for each j ∈ Nd0 with
|j| = n, there are at least 2n−1 values of m ∈ Dj such that Ij,m ∩ PN = ∅, i.e. at least
half of all intervals do not contain any points of PN . As discussed before, for such empty
intervals |〈DPN , hj,m〉| = |〈LN , hj,m〉| ' N2−2|j| ' 2−n. We use the definition of the
BMOd norm (14) and choose the measurable set U = [0, 1)d to obtain∥∥∥DPN |BMOd

∥∥∥2
≥
∑
j∈Nd0

2|j|
∑
m∈Dj

|〈DPN , hj,m〉|
2 ≥

∑
j∈Nd0
|j|=n

2|j|
∑
m∈Dj

Ij,m∩PN=∅

|〈LN , hj,m〉|2

�
∑
j∈Nd0
|j|=n

2n · 2n−1 · 2−2n ' nd−1,

which finishes the proof, since n ' logN .

3.3 Proof of Theorem 1.3

We now turn our attention to the proof of the upper bound in the Orlicz space exp
(
L2/(d−1)).

Once again we consider three different cases, namely large, intermediate, and small in-
tervals.
We start with the large intervals. Applying the triangle inequality, Chang–Wilson–

Wolff inequality (Lemma 2.3), and part (ii) of Lemma 3.1, we obtain∥∥∥∥∥ ∑
j∈Nd−1

|j|<n−dt/2e

2|j|
∑
m∈Dj

〈DP2n , hj,m〉hj,m

∥∥∥∥∥
exp(L2/(d−1))

≤
n−dt/2e∑
k=0

∥∥∥∥∥ ∑
j∈Nd−1
|j|=k

2|j|
∑
m∈Dj

〈DP2n , hj,m〉hj,m

∥∥∥∥∥
exp(L2/(d−1))

�
n−dt/2e∑
k=0

∥∥∥∥∥
( ∑
j∈Nd−1
|j|=k

22|j| ∑
m∈Dj

|〈DP2n , hj,m〉|
2 χIj,m

)1/2∥∥∥∥∥
L∞

�
n−dt/2e∑
k=0

∥∥∥∥∥
( ∑
j∈Nd−1
|j|=k

22k 2−2n (2n− t− 2|j|)2(d−1) ∑
m∈Dj

χIj,m

)1/2∥∥∥∥∥
L∞

� 2−n
n−t/2−1∑

k=0
22k (2n− t− 2k)2(d−1) (k + 1)d−1

1/2
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� 2−n 2nn(d−1)/2 = n(d−1)/2.

Now we consider the medium sized intervals applying (i) of Lemma 3.1 and obtaining∥∥∥∥∥ ∑
j∈Nd−1

n−dt/2e≤|j|<n

2|j|
∑
m∈Dj

〈DP2n , hj,m〉hj,m

∥∥∥∥∥
exp(L2/(d−1))

≤
n−1∑

k=n−dt/2e

∥∥∥∥∥ ∑
j∈Nd−1: |j|=k

2|j|
∑
m∈Dj

〈DP2n , hj,m〉hj,m

∥∥∥∥∥
exp(L2/(d−1))

≤
n−1∑

k=n−dt/2e

∥∥∥∥∥
( ∑
j∈Nd−1: |j|=k

22k ∑
m∈Dj

|〈DP2n , hj,m〉|
2 χIj,m

)1/2∥∥∥∥∥
L∞

�

 n−1∑
k=n−dt/2e

(k + 1)d−1

1/2

� n(d−1)/2.

In the case of small intervals we again treat the linear and the counting parts sepa-
rately. Since |〈LP2n , hj,m〉| � 2−2|j|+n we obtain

∥∥∥∥∥ ∑
j∈Nd−1
|j|≥n

2|j|
∑
m∈Dj

〈LP2n , hj,m〉hj,m

∥∥∥∥∥
exp(L2/(d−1))

≤
∞∑
k=n

∥∥∥∥∥ ∑
j∈Nd−1: |j|=k

2|j|
∑
m∈Dj

〈LP2n , hj,m〉hj,m

∥∥∥∥∥
exp(L2/(d−1))

≤
∞∑
k=n

∥∥∥∥∥
( ∑
j∈Nd−1: |j|=k

22k ∑
m∈Dj

|〈LP2n , hj,m〉|
2 χIj,m

)1/2∥∥∥∥∥
L∞

� 2n
∞∑
k=n

(
2−2k (k + 1)d−1

)1/2
� n(d−1)/2.

The estimate of the counting part is somewhat harder. Recall that J denotes the
family of all dyadic intervals Ij,m ⊂ U with |j| ≥ n, i.e. |Ij,m| ≤ 2−n, such that
〈CP2n , hj,m〉 6= 0. As noticed earlier, if Ij,m ∈ J , this implies that Ij,m contains at least
one point of P2n in its interior and therefore jk ≤ 2n (i.e. |Ijk,mk | ≥ 2−2n) for each
k = 1, . . . , d.
In addition, for each Ij,m ∈ J , we can find its unique parent Ĩj′,m′ which satisfies the

following conditions: (i) Ij,m ⊂ Ĩj′,m′ ; (ii) |j′| = 2−n, i.e. |Ĩj′,m′ | = 2−n; and (iii) jk = j′k
(which implies that Ijk,mk = Ĩj′

k
,m′

k
) for all k = 1, . . . , d− 1. In other words, to find the
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parent, we expand the d-th side of Ij,m so that the resulting interval has volume 2−n.
We can now reorganize the sum according to the parents

∑
j∈Nd−1
|j|≥n

2|j|
∑
m∈Dj

〈CP2n , hj,m〉hj,m =
∑

Ĩj′,m′ : |j′|=n
j′k≤2n: k=1,...,d

∑
Ij,m⊂Ĩj′,m′

jk=j′k: k=1,...,d−1

2|j|〈CP2n , hj,m〉hj,m.

(20)

Fix an arbitrary parent interval Ĩj′,m′ and consider the innermost sum above.

∑
Ij,m⊂Ĩj′,m′
jk=j′k: k≤d−1

2|j|〈CP2n , hj,m〉hj,m =
∑

p∈P2n∩Ĩj′,m′

∑
Ij,m⊂Ĩj′,m′
jk=j′k: k≤d−1

2|j|〈χ[p,1), hj,m〉hj,m. (21)

We notice that the expression inside the last sum splits into a product of one-dimensional
factors:

2|j|〈χ[p,1), hj,m〉hj,m(x) =
d∏
j=1

2jk〈χ[pk,1), hjk,mk〉hjk,mk(xk)

=
(
d−1∏
j=1

2j′k〈χ[pk,1), hj′
k
,m′

k
〉hj′

k
,m′

k
(xk)

)
· 2jd〈χ[pd,1), hjd,md〉hjd,md(xd)

= 2|j′∗|〈χ[p∗,1), hj′∗,m′∗〉hj′∗,m′∗(x1, . . . , xd−1) · 2jd〈χ[pd,1), hjd,md〉hjd,md(xd),

where by ∗ we have denoted the projection of the d-dimensional vector to its first d− 1
coordinates, e.g. if j = (j1, . . . , jd), then j∗ = (j1, . . . , jd−1). The expression in (21) can
now be rewritten as

∑
Ij,m⊂Ĩj′,m′
jk=j′k: k≤d−1

2|j|〈χ[p,1), hj,m〉hj,m(x)

= 2|j′∗|〈χ[p∗,1), hj′∗,m′∗〉hj′∗,m′∗(x∗) ·
∑

Ijd,md⊂Ĩj′
d
,m′
d

2jd〈χ[pd,1), hjd,md〉hjd,md(xd),

leaving us with the task to examine this ultimate one-dimensional sum. However, one can
easily see that this sum is precisely the Haar expansion of the function χ[pd,1) restricted
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to the interval Ĩj′
d
,m′

d
, except for the constant term, i.e.

∑
Ijd,md⊂Ĩj′

d
,m′
d

2jd〈χ[pd,1), hjd,md〉hjd,md(xd) = χ
Ĩj′
d
,m′
d

(xd)·
(
χ[pd,1)(xd)−2jd

∣∣∣[pd, 1)∩Ĩj′
d
,m′

d

∣∣∣),
(22)

which, in particular is bounded pointwise by 2. Obviously,
∣∣∣2|j′∗|〈χ[p∗,1), hj′∗,m′∗〉

∣∣∣ ≤ 1. We
recall that, according to Lemma 2.5, there are at most 2dt/2e points p ∈ P2n ∩ Ĩj′,m′ .
Therefore,

∑
Ij,m⊂Ĩj′,m′

jk=j′k: k=1,...,d−1

2|j|〈CP2n , hj,m〉hj,m(x) = αj′(xd)hj′∗,m′∗(x∗),

where |αj′(xd)| ≤ 2dt/2e+1 � 1.
Let xd be fixed for the moment. Due to (22), for a given (d − 1)-dimensional dyadic

interval Ĩj′∗,m′∗ , there exists only one d-dimensional dyadic interval Ĩj′,m′ = Ĩj′∗,m′∗× Ĩj′d,m′d
with |Ĩj′,m′ | = 2−n and such that αj′(xd) 6= 0. Therefore, applying (20) and taking Lp-
norms in the first d− 1 variables we obtain:∥∥∥∥∥ ∑

j∈Nd−1
|j|≥n

2|j|
∑
m∈Dj

〈CP2n , hj,m〉hj,m

∥∥∥∥∥
Lp(dx∗)

=
∥∥∥∥∥ ∑

Ĩj′,m′ : |j′|=n
j′k≤2n: k=1,...,d

∑
Ij,m⊂Ĩj′,m′

jk=j′k: k=1,...,d−1

2|j|〈CP2n , hj,m〉hj,m

∥∥∥∥∥
Lp(dx∗)

=
∥∥∥∥∥ ∑

Ĩj′∗,m
′
∗

: |j′|=n
j′k≤2n, k=1,...,d−1

αj′(xd)hj′∗,m′∗

∥∥∥∥∥
Lp(dx∗)

� p
d−1

2

∥∥∥∥∥
( ∑

Ĩj′∗,m
′
∗

: |j′|=n
j′k≤2n, k=1,...,d−1

|αj′(xd)|2χĨj′∗,m′∗

)1/2∥∥∥∥∥
Lp(dx∗)

� p
d−1

2 n
d−1

2 ,

where in the last line we have employed the (d − 1)-dimensional Littlewood–Paley in-
equality (12) and the fact that there are of the order of nd−1 choices of j′∗ in the sum.
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Integrating this bound with respect to xd and applying Proposition 2.2 we arrive at∥∥∥∥∥ ∑
j∈Nd−1
|j|≥n

2|j|
∑
m∈Dj

〈CP2n , hj,m〉hj,m

∥∥∥∥∥
exp
(
L2/(d−1)

) � n d−1
2 ,

which finishes the proof of Theorem 1.3.

3.4 Proof of Corollary 1.4

We set α = 2
d−1 and use Proposition 2.4 to interpolate between the exp

(
L2/(d−1)) esti-

mate (8) of Theorem 1.3 and the L∞ estimate (17) of Lemma 2.6:

∥∥∥DP2n | exp(Lβ)
∥∥∥ � ∥∥∥DP2n | exp(L2/(d−1))

∥∥∥ 2
(d−1)β ·

∥∥∥DP2n |L∞([0, 1)d)
∥∥∥1− 2

(d−1)β

� n
d−1

2 ·
2

(d−1)β n
(d−1)·

(
1− 2

(d−1)β

)
= n

(d−1)− 1
β .

3.5 Orlicz space estimates and star-discrepancy

In the end we would like to outline an argument which demonstrates how estimates in
exponential Orlicz spaces may be related to the “great open problem” of the subject
[2], i.e. sharp bounds on the L∞-discrepancy. Let us assume that for a certain order 2
digital net P2n with N = 2n points, for some α > 0 the discrepancy function satisfies an
exponential bound

‖DP2n | exp(Lα)‖ � (logN)
d−1

2 ' n
d−1

2 . (23)

This trivially leads to the following distributional estimate: for each λ > 0

µ
{
x ∈ [0, 1]d :

∣∣DP2n (x)
∣∣ > λ

}
� exp

(
−
(

λ

n(d−1)/2

)α)
,

where µ is the Lebesgue measure. The fact that P2n is a binary digital net (i.e. all
points have binary coordinates of length 2n) implies that its discrepancy function does
not change much on dyadic intervals of side length 2−2n. Therefore, for those values of
λ, for which the set

{∣∣DP2n (x)
∣∣ > λ

}
is non-empty, we must have

µ
{
x ∈ [0, 1]d :

∣∣DP2n (x)
∣∣ > λ

}
� 2−2nd.
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Comparing the last two estimates, we observe that they cannot simultaneously hold, if
λ � n

d−1
2 + 1

α , i.e. in this case the set
{∣∣DP2n (x)

∣∣ > λ
}

= ∅, in other words

∥∥DP2n
∥∥
L∞
� n

d−1
2 + 1

α . (24)

Recall that two main conjectures about the correct asymptotics of the discrepancy func-
tion predict the sharp order of growth of either (logN)d−1 or (logN)d/2. Our Theorem
1.3 is consistent with the first hypothesis: in this case (23) holds with α = 2

d−1 and
hence (24) becomes

∥∥DP2n
∥∥
L∞
� nd−1 which matches the best known upper bound (5).

If one strives to prove the second conjecture along these lines, estimate (23) should
hold with α = 2, i.e. one would need to construct a digital net whose discrepancy
function is subgaussian.
We notice that Skriganov [39, Lemma 6.2] uses a somewhat different discretiza-

tion approach which yields similar results and shows that an estimate in Orlicz space
exp

(
L2/(d−1)) yields the L∞ upper bound for the discrepancy function of the order

(logN)d−1.
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2013-008 Bächle, A.; Margolis, L.: Rational conjugacy of torsion units in integral group rings
of non-solvable groups

2013-007 Knarr, N.; Stroppel, M.J.: Heisenberg groups over composition algebras

2013-006 Knarr, N.; Stroppel, M.J.: Heisenberg groups, semifields, and translation planes
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