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jochen.schmid@mathematik.uni-stuttgart.de

Abstract

This paper addresses the problem of wellposedness of non-autonomous linear
evolution equations ẋ = A(t)x in uniformly convex Banach spaces. We assume that
A(t) : D ⊂ X → X, for each t is the generator of a quasi-contractive C0-group
where the domain D and the growth exponent are independent of t. Well-posedness
holds provided that t 7→ A(t)y is Lipschitz for all y ∈ D. Hölder continuity of
degree α < 1 is not sufficient and the assumption of uniform convexity cannot be
dropped.

1 Introduction

In the literature the existence of the propagator (evolution system) for the non-auto-
nomous Schrödinger equation is often discussed within the more general context of
abstract non-autonomous linear evolution equation

ẋ = A(t)x, x(s) = y (1)

in some Banach space X where A(t) : D(A(t)) ⊂ X → X for each t ∈ [0, T ] is the
generator of a strongly continuous semigroup. On the level of proofs this approach
involves serious technical difficulties that are associated with the lack of structure of
general Banach spaces and the non-reversibility of the dynamics given by a semigroup.
The prize for the solution of these problems is paid in terms of the regularity required
of t 7→ A(t) [6, 7, 2, 12, 9, 4].

In the present paper, which is motivated by the Schrödinger equation, the evolution
problem (1) is discussed in a more restrictive setting, which does not have the drawbacks
mentioned above. In this setting X is a uniformly convex Banach space and A(t), for
each t ∈ [0, T ] is the generator of a strongly continuous group rather than a semigroup.
We assume, moreover, that this group is quasi-contractive with a growth exponent that
is independent of t and that the domain D = D(A(t)) is independent of t as well. Our
main result, in the simplest form, establishes the existence of a unique evolution system
U(t, s) provided

t 7→ A(t)y (2)

is Lipschitz for all y ∈ D. It follows that t 7→ x(t) = U(t, s)y is the unique continuously
differentiable solution of (1) and that it depends continuously on the initial data s and
y (well-posedness). We give examples showing that Hölder continuity of the map (2) is
not sufficient and that Lipschitz continuity is not sufficient anymore if the assumption
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of uniform convexity is dropped. This means in particular that well-posedness of the
non-autonomous Schrödinger equation - the Equation (1) if X is a Hilbert space and
A(t)∗ = −A(t) - requires less regularity than well-posedness of (1) in the general Banach
space setting.

The well-posedness of (1) in uniformly convex Banach spaces was previously stud-
ied by Kato [6]. Our result described above could be derived from the Theorem 5.2
combined with the information from the Remark 5.3 in [6]. See Theorem 3.2 of [13] for
a Hilbert space version of this result of Kato’s. The more general version of our main
result, the Theorem 2.1 below, combined with the Remark 2.3, does not follow from
previous work and our counterexamples are new as well. Moreover, the present paper
shows that the essence of Kato’s work in the uniformly convex case can be sumarized
in a short and simple proof that requires nothing but basic functional analysis and a
rudimentary knowledge of semigroup theory. This we consider the main message of our
paper.

2 Preparations, Results and Examples

Let X be a complex Banach space and let A(t) : D ⊂ X → X, t ∈ [0, T ] be a
family of closed linear operators with a time-independent dense domain D ⊂ X. A
two-parameter family of linear operators U(t, s) ∈ L (X), will be called an evolution
system for A(t) on D if the following conditions are satisfied:

(i) U(t, s)D ⊂ D and the map t 7→ U(t, s)y on [0, T ] is a continuously differentiable
solution of (1) for any y ∈ D and s ∈ [0, T ].

(ii) U(s, s) = 1 and U(t, r)U(r, s) = U(t, s) for all s, r, t ∈ [0, T ].

(iii) (t, s) 7→ U(t, s) strongly continuous on [0, T ]× [0, T ].

Any two-parameter family of linear operators U(t, s) ∈ L (X) satisfying (ii) and (iii)
is called an evolution system.

Existence of an evolution system U(t, s) with the properties analogous to (i)-(iii)
on the triangle 0 ≤ s ≤ t ≤ T is equivalent to well-posedness in the classical sense of
C1−solutions [3], Proposition VI.9.3. Our assumptions on A(t) in Theorem 2.1 will
allow us to construct U(t, s) on the entire square [0, T ]× [0, T ] and this is essential for
our proof.

For the reader’s convenience we recall that a Banach space X is called uniformly
convex if, given ε > 0 there exists δ > 0 such that any pair of normalized vectors
x, y ∈ X with ‖(x+ y)/2‖ > 1− δ satisfies ‖x− y‖ < ε. Every Hilbert space and every
Lp(Rn) with 1 < p < ∞ is uniformly convex. Uniformly convex Banach spaces are
reflexive (Milman) and uniform convexity implies that weak convergence xn ⇀ x turns
into strong convergence as soon as ‖xn‖ → ‖x‖.

As a final preparation we recall from [9, 3] that the norm of every strongly contin-
uous semigroup eAt, t ≥ 0, satifies a bound of the form ‖eAt‖ ≤ Meωt. It follows that
σ(A) ⊂ {Re z ≤ ω}. If M = 1 then the semigroup is called quasi-contractive.

Theorem 2.1. Let X be a uniformly convex Banach space and let A(t) : D ⊂ X → X,
for each t ∈ [0, T ] be the generator of a strongly continuous group with

‖eA(t)s‖ ≤ eω|s|, s ∈ R, (3)
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where ω and the domain D are independent of t. Suppose that t 7→ A(t)y is Lipschitz
for all y ∈ D. Then there exists a unique evolution systems U(t, s) for A(t) on D.

Remark 2.2. This theorem is false if the assumption of uniform convexity is dropped
(Example 1), and moreover, even if X is a Hilbert space and A(t) is skew-selfadjoint
the Lipschitz continuity cannot be replaced by Hölder continuity of some degree α < 1
(Example 2).

Proof. Let A(t) := A(t) − (ω + 1). We define ‖y‖t := ‖A(t)y‖ which is equivalent to
the graph norm of A(t). Hence Yt = (Y, ‖ · ‖t) is a Banach space. Like X the space Yt
is uniformly convex as can be easily verified using the definition of uniform convexity
given above.

In the special case where X is a Hilbert space and A(t) is skew-selfadjoint is follows
that ‖y‖2t = ‖A(t)y‖2 + ‖y‖2 and hence Yt is a Hilbert space too.

Let Y = Y0 and note that the strong Lipschitz continuity of t 7→ A(t) is equiv-
alent to the Lipschitz continuity of t 7→ A(t) ∈ L (Y,X) by the principle of uniform
boundedness. This means that

‖A(t)−A(s)‖Y,X ≤ L|t− s| (4)

for some L and all s, t ∈ [0, T ].

Step 1: There exists a constant c such that for all s, t ∈ [0, T ] and all y ∈ D,

‖y‖t ≤ ec|t−s|‖y‖s.

Proof. By the continuity of t 7→ A(t) ∈ L (Y,X), the map t 7→ A(t)−1 ∈ L (X,Y ) is
continuous and hence C := sups∈I ‖A(s)−1‖X,Y <∞. In view of ‖y‖t ≤ ‖A(t)A(s)−1‖‖y‖s,
the Step 1 with c = CL follows from

‖A(t)A(s)−1‖ = ‖1 + (A(t)−A(s))A(s)−1‖
≤ 1 + ‖A(t)−A(s)‖Y,X‖A(s)−1‖X,Y ≤ 1 + CL|t− s| ≤ eCL|t−s|.

We now choose a sequence of partitions πn of [0, T ] with the property that the mesh
size of πn vanishes in the limit n→∞. Given t ∈ [0, T ] and n ∈ N we use tn to denote
the largest element of πn less or equal to t. The smallest element of πn larger than tn is
denoted t+n , the largest one smaller than tn is denoted t−n . We thus have t−n < tn < t+n
and

tn ≤ t < t+n .

Note that the points tn and t±n are functions of both t and n. We define Un(t, s) for
t > s by

Un(t, s) := eA(tn)(t−tn)eA(t
−
n )(tn−t−n ) · · · eA(sn)(s

+
n−s)

and Un(s, t) := Un(t, s)−1. Note that ‖Un(t, s)‖ ≤ eω|t−s| by assumption (3).

Step 2: For all t > s, n ∈ N, and y ∈ D,

‖Un(t, s)y‖t ≤ e(c+ω)(t−s)+2c(s−sn)‖y‖s
and ‖Un(s, t)y‖s ≤ e(c+ω)(t−s)+2c(s−sn)‖y‖t.
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In particular, ‖Un(t, s)‖Y,Y < M for all s, t ∈ [0, T ] and all n ∈ N.

Proof. With the help of Step 1 we pass from ‖ · ‖t to ‖ · ‖tn , then from ‖ · ‖tn to ‖ · ‖t−n
and so on, where in each step we use that eA(t)τ is a quasi-contraction in Yt satisfying
(3) for any t ∈ I. In this way we arrive at

‖Un(t, s)y‖t ≤ ec(t−sn)+ω(t−s)‖y‖sn ,

which, using Step 1 again, leads to the first of the asserted inequalities. The second
one is proved analogously and the uniform bound on ‖Un(t, s)‖Y,Y now follows from
Step 1 and the compactness of [0, T ].

Step 3: For all x ∈ X, the limit U(t, s)x := limn→∞ Un(t, s)x exists uniformly in
s, t ∈ [0, T ]. It defines an evolution systems U(t, s).

Proof. For any y ∈ Y the map τ 7→ Um(t, τ)Un(τ, s)y is piecewise continuously differ-
entiable with possible jumps in the derivative at the partition points from πm ∪ πn. It
follows that

Un(t, s)y − Um(t, s)y = Um(t, τ)Un(τ, s)y|τ=tτ=s

=

∫ t

s
Um(t, τ)

(
A(τn)−A(τm)

)
Un(τ, s)y dτ.

By Step 2 we conclude

‖Un(t, s)y−Um(t, s)y‖ ≤
∫ 1

0
eω|t−τ |‖A(τn)−A(τm)‖Y,XM‖y‖Y dτ → 0 (n,m→∞)

by the continuity of τ 7→ A(τ) ∈ L (Y,X). The assertion now follows from the density
of Y ⊂ X and from the uniform boundedness ‖Un(t, s)‖ ≤ eω|t−s|. It follows that
(t, s) 7→ U(t, s)x is continuous and the property (ii) of evolution systems is inherited
from Un(t, s) as well.

Step 4: U(t, s)D ⊂ D and for all y ∈ D and s, t ∈ [0, T ],

‖U(t, s)y‖t ≤ e(c+ω)|t−s|‖y‖s.

Proof. Let y ∈ D. By Step 2 the sequence (Un(t, s)y) is bounded in Yt and by Step 3,
Un(t, s)y → U(t, s)y in X. Since Yt is reflexive it follows that U(t, s)y ∈ D and that
Un(t, s)y → U(t, s)y weakly in Yt. Therefore by the estimates of Step 2,

‖U(t, s)y‖t ≤ lim inf
n→∞

‖Un(t, s)y‖t ≤ e(c+ω)|t−s|‖y‖s.

Step 5: For all y ∈ D the map t 7→ U(t, s)y is differentiable in the norm of X and

d

dt
U(t, s)y = A(t)U(t, s)y.

Proof. In view of U(t, s)Y ⊂ Y and U(t + h, s) = U(t + h, t)U(t, s), see Step 4, it
suffices to prove the assertion for s = t. For any y ∈ D,

U(t+ h, t)y − eA(t)hy = lim
n→∞

eA(t)(h+t−τ)Un(τ, t)y
∣∣∣τ=t+h
τ=t

= lim
n→∞

∫ t+h

t
eA(t)(h+t−τ)

(
A(τn)−A(t)

)
Un(τ, s)y dτ.
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By Step 2 it thus follows that

‖1

h
(U(t+ h, t)y − eA(t)hy)‖

≤ lim
n→∞

1

|h|

∣∣∣∣∫ t+h

t
eω|t+h−τ |‖A(τn)−A(t)‖Y,X dτ

∣∣∣∣ M‖y‖Y
=

1

|h|

∣∣∣∣∫ t+h

t
eω|t+h−τ |‖A(τ)−A(t)‖Y,X dτ

∣∣∣∣ M‖y‖Y → 0 (h→ 0)

by the continuity of τ 7→ A(τ) ∈ L (Y,X). The Step 5 now follows from (eA(t)hy −
y)/h→ A(t)y.

Step 6: For all y ∈ D the map t 7→ A(t)U(t, s)y is continuous in the norm of X.

Proof. By the continuity of t 7→ A(t) ∈ L (Y,X) it suffices to show that t 7→ U(t, s)y is
continuous in the norm of Y . To this end it suffices to show that limh→0 U(t+h, t)y = y
in the norm of Y or, equivalently, in the norm of Yt. Since U(t + h, t)y → y in
X and since h 7→ U(t + h, t)y is bounded in Yt, see Step 1 and Step 4, it follows that
U(t+h, t)y → y weakly in Yt. See the proof of Step 4 for a similar argument. Therefore

‖y‖t ≤ lim inf
h→0

‖U(t+ h, t)y‖t ≤ lim sup
h→0

‖U(t+ h, t)y‖t

= lim sup
h→0

ec|h|‖U(t+ h, t)y‖t+h ≤ lim sup
h→0

e(2c+ω)|h|‖y‖t = ‖y‖t.

The weak convergence U(t+h, t)y → y in Yt and the convergence of the norms implies
norm convergence in Yt by the uniform convexity.

Remark 2.3. 1. The strong Lipschitz continuity of the map t 7→ A(t) is a convenient,
but not a necessary condition. It may be replaced with the assumption that

‖y‖t ≤ e|
∫ t
s α(τ) dt|‖y‖s (5)

with some integrable function α : I → [0,∞). In the proof of Theorem 2.1 this
assumption replaces the Step 1. Then the subsequent steps continue to hold with
corresponding modifications. Condition (5) is satisfied if

‖A(t)y −A(s)y‖ ≤
∣∣∣∣∫ t

s
α(τ) dt

∣∣∣∣ ‖y‖0 (6)

with an integrable function α, possibly different from α in (5), and for (6) to
hold the W 1,1-regularity imposed in [7, Theorem 1] - the main result of [7] - is
sufficient. Similarly, the W 1,∞-condition of Kato [5] implies the strong Lipschitz
continuity of t 7→ A(t).

2. If A(t) was assumed to be the generator of a semigroup, rather than a group, in
Theorem 2.1, then the arguments of our proof above still establish existence of a
(unique) evolution system U(t, s) defined on the triangle 0 ≤ s ≤ t ≤ T such that

∂+t U(t, s)y = A(t)U(t, s)y,

where t 7→ A(t)U(t, s)y is right-continuous and ∂+t denotes the derivative from
the right. Moreover, ∂tU(t, s)y = A(t)U(t, s)y except possibly for a countable set
of t-values depending on y and s (see the proof of Theorem 5.2 of [6]).
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3. In the case where the first or higher, suitably defined commutators of the opera-
tors A(t) at distinct times are scalars, the continuity of the map (2) is sufficient
for well-posedness [4, 8, 11].

4. In the case where X is a Hilbert space there are formal similarities between our
Theorem 2.1 and the Theorem C.2 of Ammari and Breteaux [1]. In [1] the case
of skew-selfadjoint generators with time-independent form domains is considered
and a notion of well-posedness in a weak sense is established.

In the remainder of this paper we specialize to operator families of the form A(t) =
A0 + B(t) where A0 is the generator of a C0-group in X, B(t) ∈ L (X) and t 7→ B(t)
is strongly continuous. Suppose that the evolution system U(t, s) for A exists. Then,
for all y ∈ D(A0),

U(t, s)y = eA0(t−s)y +

∫ t

s
dτeA0(t−τ)B(τ)U(τ, s)y

which, by assumption on B(t), may be iterated indefinitively into a convergent Dyson
series. For the evolution system in the interaction picture we obtain

e−A0tU(t, s)eA0sy = y+

∫ t

s
dτ1B̃(τ1)y

+

∫ t

s
dτ1

∫ τ1

s
dτ2B̃(τ1)B̃(τ2)y + . . . , (7)

where B̃(τ)y := e−A0τB(τ)eA0τ . We have thus shown that the operator family U(t, s)
defined by (7) is the only candidate for the evolution system generated by A(t) =
A0 +B(t).

The following theorem is now an immediate corollary of the previous one and The-
orem 3.1.1 from [9]. It improves on the Theorem 6.2 of Phillips [10].

Theorem 2.4. Suppose X is a uniformly convex Banach space and that A(t) = A0 +
B(t) for t ∈ [0, T ] where A0 : D ⊂ X → X is the generator of a strongly continuous
quasi-contractive group in X and B(t) ∈ L (X). If t 7→ B(t)y is continuous for all
y ∈ X and Lipschitz for all y ∈ D, then there exists a unique evolution system U(t, s)
for A on D and e−A0tU(t, s)eA0s is given by the Dyson series (7).

The following examples show that the assumptions of uniform convexity and Lips-
chitz continuity in this theorem and hence in the Theorem 2.1 cannot be weakened in
an essential way.

Example 1. Let X = C0(R) be the Banach space of bounded and continuous functions
vanishing at infinity - the norm is the usual maximum norm - and let eA0t be the strongly
continuous group in X defined by left translations. That is, eA0tx(ξ) = x(ξ + t). We
define A(t) : D ⊂ X → X for t ∈ [0, 1] by D = D(A0) and

A(t) = A0 +B(t), B(t) = eA0tBe−A0t

where B denotes multiplication with the following bounded function f : R→ [0, 1]: we
choose f(ξ) = 0 for ξ ≤ 0, f(ξ) = ξ for ξ ∈ [0, 1] and f(ξ) = 1 for ξ ≥ 1. Then B(t) is
multiplication with the function f(ξ+ t) and from the fact that f is Lipschitz it is easy
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to check that t 7→ B(t) is strongly Lipschitz. If the evolution system U(t, s) existed,
then it would be given by the Dyson series (7) and since B̃(t) = B it would follow that

U(t, 0) = eA0teBt. (8)

Since D = D(A0) is left invariant by eA0t it would follow that eBtD(A0) ⊂ D(A0).
But D(A0) = {y ∈ C1(R) | y, y′ ∈ X} and the operator eBt acts as multiplication
with the non-differentiable function ef(ξ)t. Hence eBtD(A0) 6⊂ D(A0) and we have a
contradiction. Therefore an evolutions system U for A on D cannot exist.

Example 2. For this example we adopt all elements of Example 1 with two exceptions:
now X = L2(R) and f denotes multiplication with a bounded function f = igα, where
gα : R→ R is nowhere differentiable but Hölder continuous of degree α for given α < 1.
An example of such a function is the Weierstraß function

gα(ξ) =

∞∑
n=1

2−nα cos(2nξ),

see, e.g.,[14], Theorem II.4.9. It easily follows that t 7→ B(t)x is Hölder continuous
of degree α for all x ∈ X. As in Example 1 we argue that eBtD(A0) ⊂ D(A0) if the
evolution system U for A exists. But eBt acts by multiplication with ξ 7→ ef(ξ)t, which
is nowhere differentiable, and D(A0) = H1(R) whose elements are differentiable almost
everywhere. We have a contradiction and hence an evolution system U for A on D
cannot exist. Note that A(t) is skew-selfadjoint in this example.
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