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A non-classical unital of order four
with many translations

Theo Grundhöfer, Markus J. Stroppel, Hendrik Van Maldeghem

Abstract

We give a general construction for unitals of order q admitting an action of SU(2, q). The
construction covers the classical hermitian unitals, Grüning’s unitals in Hall planes and
at least one unital of order four where the translation centers fill precisely one block. For
the latter unital, we determine the full group of automorphisms and show that there are
no group-preserving embeddings into (dual) translation planes of order 16.
Mathematics Subject Classification: 51A10 51E21 05E20
Keywords: Design, unital, automorphism, translation, hermitian unital

Introduction

Let U = (U,B) be a unital of order q, and let Γ B Aut(U). For each point c ∈ U we consider
the group Γ[c] of translations with center c, i.e., the set of all automorphisms of U fixing each
block through c. We say that c is a translation center of U if Γ[c] is transitive on the set of
points different from c on any block through c.

The main result of [9] states that the unital U is classical (i.e., isomorphic to the hermitian
unital corresponding to the field extension Fq2/Fq) if it has non-collinear translation centers.
Unitals with precisely one translation center seem to exist in abundance (we indicate several
quite different classes of examples in Section 5 below). If there are two translation centers c
and c′ then the orbit of c′ under Γ[c] fills the complement of c in the block joining c with c′.
We give an example of a unital (of order 4, see Section 1 below) where the translation centers
fill just one block. As far as we know, this unital is the first (and up to now, the only) one
with that property.

1 A curious unital of order four

Let Syl2(A5) be the set of all Sylow 2-subgroups in the alternating group A5, and let S B

〈(01234)〉. We consider the subsets E1 B {id, (023), (024), (123), (03421)} and E2 B E(1243)
1 =

{id, (041), (043), (124), (01342)}. For later reference, we abbreviate E B {E1,E2}.
We construct an incidence structure UE with two kinds of points: elements of A5 and

elements of Syl2(A5). The blocks are the following:
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• cosets Tg for T ∈ Syl2(A5), g ∈ A5,

• cosets Sg for g ∈ A5,

• sets E jg for g ∈ A5 and j ∈ {1, 2},

• a single block named [∞].

Note that the elements of Syl2(A5) are used as (labels for) points and also as certain blocks.
Incidence between points in A5 and cosets is the obvious one. A point T ∈ Syl2(A5) is incident
with [∞], with each left coset gT ( = Tgg), and with no other block.

In the present paper, we show that the incidence geometry UE is a non-classical unital
of order 4, with the following properties: The action of A5 by multiplication from the right
on itself and on the blocks apart from [∞] is an action by automorphisms of UE. Each
T ∈ Syl2(A5) acts by translations with center T. There are no other translations of UE. The
full automorphism group of UE is isomorphic to a semi-direct product of A5 with a cyclic
group of order four, where a generator of that cyclic group induces conjugation by (1243)
on A5.

2 A general construction

Motivated by the action (see 3.1 below) of SU(2, q) on the classical (hermitian) unital of order q,
we study geometries as follows.

2.1 Lemma. Let G be a group, let T be a subgroup such that conjugates Tg and Th have trivial
intersection unless they coincide (i.e., the conjugacy class TG forms a T.I. set). Assume that there is a
subgroup S and a collectionD of subsets of G such that each set D ∈ D contains 1, and the following
hold:

(Q) For each D ∈ D, the map (D ×D) r {(x, x) | x ∈ D} → G : (x, y) 7→ xy−1 is injective.
We abbreviate D∗ B {xy−1

| x, y ∈ D, x , y}.

(P) The system consisting of S r {1}, all conjugates of T r {1} and all sets D∗ with D ∈ D forms a
partition of G r {1}.

Then the incidence structure with point set G and block set

B
∞ B {Sg | g ∈ G} ∪ {Thg | h, g ∈ G} ∪ {Dg |D ∈ D, g ∈ G}

is a linear space. Each involution of G is contained in S ∪
⋃

g∈G Tg.
We consider each conjugate Th as a point at infinity, call [∞] B {Th

| h ∈ G} the block at infinity
(incident with each point at infinity, and no point in G), and extend the incidence relation in two
different ways:

(a) Make each conjugate Th incident with each coset Thg−1
g = gTh (and no other block in B∞).

This gives an incidence structure UD B
(
G ∪ {Th

| h ∈ G},B∞ ∪ {[∞]}, I
)
.

(b) Make each conjugate Th incident with each coset Thg (and no other block inB∞). This gives an
incidence structure U[

D
B

(
G ∪ {Th

| h ∈ G},B∞ ∪ {[∞]}, I[
)
.

Then both UD and U[
D

are linear spaces, and the following hold.

1. Via multiplication from the right on G and conjugation on the point row of [∞], the group G
acts as a group of automorphisms on UD.

2. On U[
D

the group G also acts by automorphisms via multiplication from the right on G but
trivially on the point row of [∞].
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Now let G be finite, and abbreviate q B |T|. Assume that |G| = q3
− q, that there are q + 1 conjugates

of T, and that |S| = q + 1 = |D| holds for each D ∈ D. Note that we have |D| = q − 2 in that case.

3. Both UD and U[
D

are 2 − (q3 + 1, q + 1, 1) designs; i.e., unitals of order q.

4. On the unital UD each conjugate of T acts as a group of translations. Thus each point on the
block [∞] is a translation center, and G is two-transitive on [∞].

5. On the unital U[
D

the group G contains no translation except the trivial one.

Proof. Assume first that some involution s ∈ G lies outside S∪
⋃

g∈G Tg. Then the assumptions
yield that s is of the form s = xy−1 with x, y ∈ D for some D ∈ D. Then xy−1 = s = s−1 = yx−1

contradicts assumption (Q).
We consider blocks through 1 first. Cosets like Thg or Sg contain 1 if, and only if, they

coincide with the subgroups Th and S, respectively. The situation is different for Dg with
D ∈ D: here 1 ∈ Dg ⇐⇒ g−1

∈ D. Thus Dg passes through 1 precisely if Dg ⊆ D∗ ∪ {1}.
Now the partition required in condition (P) secures that each element in Gr {1} is joined to 1
by a unique block in B∞. As G forms a transitive group of automorphisms of (G,B∞), that
structure is a linear space.

The conditions imposed on the orders of G, T, S, and |D|make it immediate that both UD
and U[

D
are 2 − (q3 + 1, q + 1, 1) designs.

Each orbit of each conjugate of T is contained in a block, but these blocks are assigned points
at infinity in different ways in the two incidence structuresUD andU[

D
. For (g,Th) ∈ G× [∞]

the unique joining block inUD is Thg−1
g. ThusUD is a linear space. InU[

D
the unique joining

block for (g,Th) is Thg, and U[
D

is a linear space, as well.
We note that the subgroup Th

≤ G fixes each block through the point Th in UD because
Thg−1

g = gTh. Thus Th is a group of translations with center Th onUD. As Th acts transitively
on the set of points on the block Th that are different from Th (considered as a point), the
point Th is a translation center.

In U[
D

the group T fixes [∞] and precisely |NG(T)/T| blocks through each point Th
∈ [∞],

namely the blocks of the form Thg = gThg with hg ∈ NG(T). As every element of G fixes each
point at infinity, the group G contains no translations of the unital U[

D
apart from the trivial

one. �

2.2 Remarks. It may come as a surprise that the incidence relation for points at infinity is not
determined by the affine part of UD (i.e., the linear space (G,B∞) together with the action
of G on that geometry). We have at least one other possibility, namely the unitalU[

D
where G

acts trivially on [∞], and there are no translations of the unital in G. Grüning’s unital (see 5.5
below) is obtained by such a completion of (G,B∞).

3 Examples

3.1 Classical unitals. Let C be a field with an involutory automorphism κ : x 7→ x. On C2

we consider the affine lines, the hermitian form (x, y) 7→ x x−y y and the subset A B
{(x, y) | x x−y y = 1}. The special unitary group with respect to the given form is

SU(2,C) =
{( x y

y x

) ∣∣∣∣ x, y ∈ C, x x−y y = 1
}
.
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It is known that SU(2,C) � SL(2,R), where R = Fix(κ). Note that SU(2,C) acts regularly on A;
we identify (x, y) ∈ A with

( x y
y x

)
∈ SU(2,C). We may even extend this to an identification of

C2 r {(x, y) | x x = y y}with a subgroup of the group of similitudes of the hermitian form.
We describe the interesting intersections of A with lines through (1, 0); in particular, all the

blocks through (1, 0):

1. The line (1, 0) + C(0, 1) is a tangent to the unital, it meets the unital only in (1, 0).

2. The (stabilizer of the) block induced by the line (1, 0) + C(1, 0) is the subgroup S =
{(x, 0) | x x = 1} of SU(2,C).

3. The (stabilizer of the) block induced by the line (1, 0) + C(1, 1) is the subgroup T1 B
{(1 + x, x) | x + x = 0}. For each s ∈ {c ∈ C | c c = 1} the line (1, 0)+C(1, s) induces the block
Ts = {(1 + x, xs) | x + x = 0} which is a conjugate of T1; in fact, we have (u−1, 0)T1(u, 0) =
Tu /u.

4. For t ∈ {c ∈ C | c c < {0, 1}}, the block induced by the line (1, 0) + C(1, t) is

Ht B {(1 + x, xt) | x + x = (t t−1)x x} .

These subsets of SU(2,C) are not subgroups; the corresponding stabilizers are trivial.

We note that Ĥt B {ab−1
| a, b ∈ Ht} equals the union

⋃
s∈C : s s=1 Hst of the orbit of Ht

under conjugation by S. Mapping (x, y) to xy−1 gives a bijection from (Ht r {(1, 0)})2

onto Ĥt.

If C is the finite field of order q2 = p2n with p = char C then Ts is a Sylow p-subgroup
of SU(2,C) = SU(2, q), the group S is cyclic of order q + 1, and there are q − 2 orbits of
blocks of type Ht under conjugation by S. We choose an arbitrary setHq = {H1, . . . ,Hq−2} of
representatives for these orbits. Then UHq is the classical (hermitian) unital.

Grüning’s unitals (embedded in Hall planes and their duals, see [10] and 5.5 below) are
obtained asU[

Hq
. For q > 2 the unitalsUHq andU[

Hq
are not isomorphic becauseU[

Hq
contains

O’Nan configurations (see [10, 5.4]).

3.2 Example. There is only one isomorphism type of unitals of order 2 because such a unital
is actually an affine plane of order 3. Our construction yields that unital from the group
S3 � SL(2, 2), its Sylow 2-subgroups, and S = 〈(012)〉; the collection H2 is empty. The two
possibilities for incidences on [∞] lead to isomorphic unitalsUH2 � U

[
H2

but different actions
of SL(2, 2).

Unitals of order 3 exist in abundance, see [4]. However, there is only one candidate for D∗,
and essentially only one choice for D:

3.3 Theorem. Assume q = 3 and G = SL(2, 3) � SU(2, 3), and let D be a collection as in 2.1.
Then S is cyclic of order 4, and D consists of just one set D. Moreover, the pair (S,D) is unique, up
to conjugation in SL(2, 3). Thus we obtain two unitals, namely UH3 and U[

H3
.

Proof. Clearly we have |D| = q − 2 = 1. We consider the elements δ B
(

1 1
0 1

)
of order 3, the

element ϕ0 B
(

0 1
−1 0

)
of order 4, and the conjugates ϕ j B δ− jϕ0δ j for j ∈ {1, 2}. The group
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SL(2, 3) contains the elements

id (of order 1), − id (of order 2),
δ, δ2, ϕ jδ = δϕ j+1,−ϕ jδ2 = −δ2ϕ j−1 (of order 3),
±ϕ j (of order 4), and
−δ,−δ2,−ϕ jδ = −δϕ j+1, ϕ jδ2 = δ2ϕ j−1 (of order 6).

Up to conjugation, we may assume that S is generated by ϕ0. The point 1 is joined by blocks
to the elements of the union T = {id, δ, δ2

} ∪ {ϕ jδ,−ϕ jδ2
| j ∈ {0, 1, 2}} of Sylow 3-subgroups

(these are the blocks that also meet the block at infinity), and joined by the block S to the
elements of S = {id,−id, ϕ0,−ϕ0}.

Without loss, we assume ϕ1 ∈ D. Then the conditions S ∩ (D r {ϕ})(−ϕ1) ⊆ S ∩D∗ = ∅ and
S ∩ (D r {ϕ})(−ϕ1) ⊆ S ∩D∗ = ∅ yield D = {id, ϕ1, b, c}with {b, c} ⊆ {−δ,−ϕ1δ,−ϕ2δ, ϕ2δ2

}. For
b = −ϕ1δwe find bc−1

∈ S∪S for each c ∈ {−δ,−ϕ2δ, ϕ2δ2
}; i.e., for each remaining choice of c.

Thus −ϕ1δ < D. Analogously, the choice b = −ϕ2δ is excluded. The last remaining possibility
is D = {id, ϕ1,−δ,−ϕ2δ}. �

3.4 Example. The isomorphisms SU(2, 4) � SL(2, 4) � A5 allow to give an alternative de-
scription for the classical unital of order 4 which will come handy if we compare UH4

and UE. We use Syl2(A5), the subgroup S = 〈(01234)〉 and C = {C1,C2} with C1 B

{id, (032), (134), (02134), (03214)} and C2 B C(1243)
1 . Then UC � UH4

and U[
C
� U[

H4
.

3.5 Example. In G = A5, we take Syl2(A5), the group S = 〈(01234)〉 and the sets E1 B

{id, (023), (024), (123), (03421)}, E2 B E(1243)
1 = {id, (023), (024), (123), (03421)} as in Section 1.

Then E B {E1,E2} together with the Sylow 2-subgroups of G and S = 〈(01234)〉 satisfies the
conditions in 2.1, so UE and U[

E
are unitals.

We show the table for Ê1 on the left, on the right there is the table for Ĉ1 (leading to the
classical unital, see 3.4); the entry in the row starting with δ on the left and the column starting
with γ on top is the quotient δγ−1:

(032) (042) (132) (01243)
(023) (234) (013) (04312)
(024) (243) (01324) (04123)
(123) (031) (04231) (01432)

(03421) (02134) (03214) (02341)

(023) (143) (04312) (04123)
(032) (01432) (01243) (124)
(134) (02341) (042) (04231)

(02134) (03421) (024) (031)
(03214) (142) (01324) (013)

4 Automorphisms and Embeddings

Recall that an O’Nan configuration consists of four blocks such that any two of them meet.
The hermitian unitals do not contain such configurations (cp. [8, 2.2]), so the following
observation secures that the unitals UE and U[

E
are not classical.

In UE we have the O’Nan configuration

D0 = {id, (023), (024), (123), (03421)} ,
D1(013) = {(013), (043), (04)(13), (01243), (03421)} ,

T B {id, (01)(34), (03)(14), (04)(13)} ,
(123)T = {(123), (01243), (03412), (04)(12)} ;

5
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note that the blocks T and (123)T = T(132)(123) share the point T ∈ [∞] in UE.
In U[

E
we have the O’Nan configuration

D0 = {id, (023), (024), (123), (03421)} ,
D1(013) = {(013), (043), (04)(13), (01243), (03421)} ,

T B {id, (01)(34), (03)(14), (04)(13)} ,
T(024) = {(024), (01243), (03241), (13)(24)} ;

now the blocks T and T(024) share the point T ∈ [∞] in U[
E

.
The following result on the full automorphism group gives an alternative argument to see

that UE is not classical.

4.1 Theorem. The unital UE is not classical, and Aut(UE) � C4 nA5.

Proof. Consider the stabilizer L of the block [∞] in Aut(UE). As the subgroup A5 ≤ Aut(UE) is
generated by the translations with centers on [∞], it is normal in L. Since A5 acts transitively
on the points not on [∞], the stabilizer Lid of the point id acts (via conjugation) faithfully by
automorphisms of A5. This means that Lid is a subgroup of S5, acting by conjugation on A5,
cf. [16].

The block S is the only block through id with non-trivial stabilizer in A5 and not meet-
ing [∞]. Thus Lid normalizes S, and is a subgroup of 〈(1243), (01234)〉. Conjugation with
(01234) does not leave {D̂0, D̂1} invariant, but σ = (1243) does.

Analogously, we find that the stabilizer of a block in the classical unitalUH4
is a semi-direct

product (C4 n C5) nA5. So the stabilizers of blocks are different, and UE � UH4
.

As the classical unitals are characterized by the fact that they have non-collinear translation
centers (see [9]), the full group of automorphisms ofUE coincides with the block stabilizer L.

�

4.2 Corollary. The unital UE is not isomorphic to a Buekenhout-Metz unital.

Proof. Every Buekenhout-Metz unital of order q admits an automorphism group of order q3

(see [7, Theorem 1] for the case of even q), but by 4.1 the order of Aut(UE) is not divisible
by 43. �

We observe that Aut(UE) has index 5 in the stabilizer of the block [∞] in Aut(UH4
). The

latter group is isomorphic to PΓU(3,F4), and has order 28
· 3 · 52

· 13 = 249 600. The block
stabilizer has order 24

· 3 · 52 = 1 200.
We can repeat the arguments from the proof of 4.1 to conclude that the normalizer of

A5 in Aut(U[
E

) is isomorphic to C4 n A5. From Grüning [10, 5.6] we know that Aut(U[
E

)
is isomorphic to a block stabilizer in the automorphism group of the classical unital. So
Aut(U[

E
) � C4 nA5.

4.3 Lemma. LetU be a unital of order q embedded in a projective plane P of order q2. If ϕ ∈ Aut(P)
leaves U invariant and induces a translation of the unital U then ϕ is an elation of P; the center is
the unique fixed point x in U, and the axis is the tangent to U at x in P. �

6
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Computer based results

Using our knowledge of Aut(UE), we notice thatUE does not occur in the collection of unitals
of order 4 presented in [15].

According to the results of a computer-based search by Bamberg, Betten, Praeger, and
Wassermann (see [3]), there are just two orbits of unitals in PG(2, 16), containing the hermitian
unitals and Buekenhout-Metz unitals, respectively. Combining that result with 4.1 and 4.2,
we obtain:

4.4 Theorem. There are no embeddings of UE into the desarguesian plane of order 16. �

4.5 Theorem. The unital UE has no embedding into any (dual) translation plane of order 16 such
that every translation of the unital extends to a collineation of the plane.

Proof. Assume that such an embedding exists. Then the translations generate a non-solvable
group isomorphic to A5 � SL(2, 4).

The plane is not desarguesian by 4.4. Up to duality, it is then one of the planes listed
in [12] (cf. also [6]). Inspection of the list yields that the involutions in that group (i.e.,
the collineations inducing the translations on the unital) are Baer involutions. This contra-
dicts 4.3. �

4.6 Remarks. Among the known projective planes of order 16 (as found on Gordon Royle’s
homepage, seehttp://staffhome.ecm.uwa.edu.au/˜00013890/), the ones admitting groups
with orders divisible by 5 are the desarguesian one, the Hall plane, the Dempwolff plane, a
plane called BBH2 in the list, and the duals of the last three planes. Apart from BBH2, all these
planes are translation planes (up to duality), and treated in 4.5. Peter Müller (Würzburg) has
checked that the automorphism group of BBH2 is solvable, using the generators for this group
from the homepage of Eric Moorhouse (see http://www.uwyo.edu/moorhouse/pub/planes16/)
and the computer algebra system Sage.

Therefore, there do not exist any embeddings of UE into any of the known projective
planes of order 16 such that the translations extend.

5 Unitals with just one translation center, or none at all

There is an ample supply of unitals having precisely one translation center. We give various
examples, starting with unitals in planes over twisted fields:

5.1 Definitions. Let q be a power of an odd prime, and let d be a divisor of q such that −1
is not in {xd−1

| x ∈ Fq}. Then δ : x 7→ xd is an automorphism of Fq; the additive map
δ + id : Fq → Fq : x 7→ xd + x is injective, and thus also surjective.

The new multiplication ∗ defined1 by (ad + a) ∗ (bd + b) B 2(adb + bda) yields a semifield
Sd

q B (Fq,+, ∗). If 1 < d < q then Sd
q is not associative (cf. [5, 5.3.8]); but S1

q = Fq. We will
describe the affine translation plane as usual, using the sets [m, t] B {(x,m ∗ x + t) | x ∈ Sd

q} for
the non-vertical lines2.

1 We have introduced the factor 2 in the definition in order to ensure that 1 ∈ Fq is still the neutral element of
the multiplication ∗— without that factor (such as in [1]) this neutral element would be 1 + 1.

2 We deviate from the description in [1], [2] here. This implies changes in the formulae for certain collineations.

7
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For each v ∈ F×q we find3 that γv : (xd + x, y) 7→ ((vx)d + vx, vd+1y) is a collineation of the
(affine) plane over Sd

q; the line [ad + a, b] is mapped to the line [(va)d + (va), vd+1b].
The projective plane PSd

q admits polarities: one of these is ˆid, interchanging (x, y) with
[x,−y]. The absolute points form an oval O B U(Sd

q, id). If q is a square then there exists a
(unique) involution κ : x 7→ x in Aut(Fq). Since κ commutes with δ ∈ Aut(Fq) we find that κ
is also an automorphism of Sd

q, and obtain a polarity κ̂ interchanging (x, y) with [x,− y]. The
absolute points form a unital U(Sd

q).
If q = r2 is a square then PSd

q contains another unital, with rather surprising properties
(see [2]): One combines translates of the polar oval O, forming the point set Et B {∞} ∪⋃

s∈Fr
(O + (0, st)) for some t ∈ Fq which is not a square. Then Et B (Et,Bt) is a unital, where

Bt consists of the traces of secants of Et in PSd
q . The unital Et is invariant under the affine

collineations of the form

ϕu,s : (Sd
q)2
→ (Sd

q)2 : (x, y) 7→
(
x + u, y + u ∗ x + 1

2 (u ∗ u) + st
)

with u ∈ Fq and s ∈ Fr. It is easy to see that {ϕu,s |u ∈ Fq, s ∈ Fr} is an elementary abelian group
acting sharply transitive on Et r {∞}. There are further collineations leaving Et invariant,
namely the maps γv with v ∈ F×r .

5.2 Theorem. The group Ξ B {ϕ0,s | s ∈ Fr} consists of translations of the unital Et, and the group
{γv | v ∈ F×r } acts transitively on Ξ r {id}. Thus Ξ is a transitive group of translations of Et. The
center∞ is fixed by all automorphisms of Et, and Et does not admit any translations apart from those
in Ξ.

Proof. The unital Et is not classical because the classical unitals do not admit any abelian
groups transitive on the complement of a point. If some automorphism of Et would move∞
then Aut(Et) would act two-transitively on Et, which is impossible on a non-classical unital
by Kantor’s result [13] (the Ree unitals also occurring in Kantor’s list do not admit any
translations at all, see [8, 1.8]). �

5.3 Examples. We conjecture that many polar unitals in semifield planes (among themU(Sd
q)

as in 5.1 and 5.2) are examples of unitals with precisely one translation center. In fact, each
of these polar unitals has at least on translation center (namely, its point at infinity); it only
remains to prove that the unital is not classical.

See [11] for an explicit example where the full group of the unital is determined.

5.4 Examples. If the polar unital in a Coulter–Matthews plane of order r2 (cf. [14, Sect. 6]) is
not classical then it has precisely one translation center. In fact, the centralizer of the polarity
acts on the unital with three orbits (cf. [14, 5.6]), of lengths 1, r2, and r3

− r2, respectively. In
particular, there is no invariant block, and the translation centers cannot form the point row
of a block. Thus either every point is a translation center (and the unital is the classical one
by [9]), or the fixed point of the centralizer of the polarity is the unique translation center.
One knows that the unital is not classical in many cases, see [14, 6.8].

5.5 Example. For each prime power q > 2, Grüning [10] constructs a unital U(q) of order q
that is embedded both in the Hall plane of order q2 and its dual. He also shows that every
automorphism of that unital extends to an automorphism of the Hall plane.

3 See [1, Prop. 1]. Our description of the collineation differs from that in [1, Prop. 1] because we use a different
description for the lines.
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In particular, there is a block [∞] invariant under every automorphism of U(q) (see [10,
5.5]), and SL(2, q) acts faithfully on U(q). The proof of [10, 5.6] actually shows that U(q)
is isomorphic to the unital U[

Hq
constructed in 2.1, using the standard collection Hq in

G = SU(2, q) � SL(2, q). One can use the action of the group Aut(U(q)) on the Hall plane
(and 4.3) to see that it contains no translations of the unital, apart from the trivial one.

The phenomenon that G acts trivially on [∞] is due to the fact that the derivation set used to
obtain the Hall plane from the desarguesian one is just our block [∞]; the process of derivation
then replaces a regulus with a transitive action of SL(2, q) by the opposite regulus, where
SL(2, q) acts trivially. The confluent affine lines fixed by T are turned into Baer subplanes.

5.6 Example. Ree unitals do not admit any translations at all, see [8, 1.8].
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