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Abstrat

In this paper we study the problem of estimating a funtion from n noiseless obser-

vations of funtion values at randomly hosen points. These points are independent

opies of a random variable whih has a density with respet to the Lebesgue-Borel

measure. This density is bounded away from zero on the unit ube and vanishes

outside. The funtion to be estimated is assumed to be (p,C)-smooth, i.e., (roughly

speaking) it is p-times ontinuously di�erentiable. Our main results are that the

supremum norm error of a suitably de�ned spline estimate is bounded in probability

by (log(n)/n)p/d for arbitrary p and d and that this rate of onvergene is optimal in

minimax sense.

Keywords: nonparametri regression without noise, rate of onvergene, spline estimate,

supremum norm error
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1. INTRODUCTION

1.1 Multivariate Sattered Data Approximation

Approximation problems in whih the input data is a set of deterministi distint points

are so-alled sattered data approximation problems whih have been extensively studied

in the literature. In a typial setting we are given a set of deterministi points (xi, yi) ∈

[0, 1]d × R
d (i = 1, . . . , n) and try to �nd a funtion m from a given funtion spae, e.g.,

a Sobolev spae, that �ts the data losely. In sattered data approximation the points are

not assumed to oupy a regular grid but rather are sattered around the spae making the

reonstrution problem di�ult. The most popular approahes inlude the moving least

squares approximation (Lanaster and Salkauskas (1981); Farwig (1986); Levin (1998);

Wendland (2001, 2005); Joldes et al. (2015)), shemes based on radial basis funtions or

onstant funtions on spheres (Lazzaro and Montefuso (2002); Ohtake et al. (2005, 2006);

Narowih et al. (2006); Johnson et al. (2009)), multiquadri interpolants (Mihelli

(1986)) and the smoothing spline approah. The latter one an be posed as the regularized

least squares problem where one minimizes the riterion

∑n
i=1(m(xi)− yi)

2 + λ||m||2H over

a lass of funtions H . The lasses of funtions inlude Beppo-Levi spae (Johnson et al.

(2009)) and Reproduing Kernel Hilbert Spae (Gia et al. (2006)). In the moving least

squares approah we seek funtion m∗
whih is a solution of the following minimization

problem:

min
m∈P

{

n
∑

i=1

(m(xi)− yi)
2w(x, xi)}, (1)

where P is a �nite-dimensional subspae (usually spanned by polynomials) of a spae of

ontinuous funtions on a ompat set Ω. Weight funtions w are typially loal, radial

funtions. It an be shown under mild onditions that the solution of problem (1) exists
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and is unique (Wendland (2001)). For the rate of approximation de�ne the separation

distane qX and the mesh norm hX,Ω as follows:

qX =
1

2
min

1≤j<k≤n
||xj − xk|| and hX,Ω = sup

x∈Ω
min

j∈{1,...,n}
‖x− xj‖,

where ‖x‖ denotes the Eulidean norm of x ∈ R
d
. Assume that a global onstant c1 exists

suh that the data separation ondition

qX ≤ hX,Ω ≤ c1 · qX (2)

holds on the data set. Then under the ondition that Ω is ompat and satis�es the so-alled

one ondition we get for f ∈ Cp(Ω) the approximation bound ‖m−m∗‖∞,Ω ≤ c2 ·h
p
X,Ω, see,

Wendland (2001, 2005). Hene if x1, . . . , xn are sattered approximately evenly in [0, 1]d,

we get

‖m−m∗‖∞,[0,1]d ≤ c3 · n
−p/d. (3)

The approximation error bounds for the radial basis funtion interpolations may be found

in Wendland (2005) and Madyh and Nelson (1992).

1.2 The Problem Studied in this Paper

In pratie it is not lear espeially in high dimensions at whih loations an estimated

funtion should be sampled. A simple but e�etive way is to generate sampling points

randomly from the uniform distribution on a ball or ube. The rest of the paper will be

devoted to estimation of an unknown funtion m observed at suh random sattered data.

Our main question is how the error bound in (3) hanges in this ase. Obviously the result

in (3) is not appliable in this ase sine ondition (2) does not hold. Nevertheless it is

natural to onjeture that a bound similar to (3) should hold for suitably de�ned estimates,
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even if the data points are randomly and not deterministially distributed. However, it is

not lear how the de�nition of the estimates should be hanged in order to be able to show

suh a result.

To formulate our problem preisely, let X , X1, . . . , Xn be independent and identially

distributed random variables with values in [0, 1]d and let m : [0, 1]d → R be a (measur-

able) funtion. Given the data Dn = {(X1, m(X1)), . . . , (Xn, m(Xn))} we are interested in

onstruting an estimate mn = mn(·,Dn) : R
d → R suh that the supremum norm error

‖mn −m‖∞,[0,1]d = supx∈[0,1]d |mn(x)−m(x)| is small.

1.3 Main Results

It is well-known that we need smoothness assumptions on m in order to derive nontrivial

results on the rate of onvergene of the global error of a funtion estimate (f., e.g., Györ�

et al. 2002, Theorem 3.1). In the sequel we assume that m is (p, C)�smooth for some

p = k + s for some k ∈ N0, s ∈ (0, 1] and C > 0, i.e., (roughly speaking, see below for

the exat de�nition) it is p-times ontinuously di�erentiable. Furthermore we will assume

throughout this paper that there exists a onstant c4 > 0 suh that

PX(Sr(x)) > c4 · r
d

does hold for all x ∈ [0, 1]d and all 0 < r ≤ 1, where Sr(x) denotes the (losed) ball of

radius r around x. (This ondition is in partiular satis�ed if X has a density with respet

to the Lebesgue-Borel measure whih is bounded away from zero on [0, 1]d.) We will show

that in this ase we an onstrut for an arbitrary p > 0 a spline estimate mn = mn(·,Dn)

suh that

‖mn −m‖∞,[0,1]d = OP

(

(

log n

n

)p/d
)

, (4)
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where we write Zn = OP(Yn) if the nonnegative random variables Zn and Yn satisfy

limc→∞ lim supn→∞P{Zn > c · Yn} = 0. Furthermore we show that the above rate of

onvergene is optimal in some minimax sense.

1.4 Disussion of Related Results

The estimation problem onsidered in this paper is a regression estimation problem without

noise in the dependent variable. The ase with noise in the dependent variable has been

studied muh more extensively in the literature. The ommon strategies omprise kernel

regression estimates (f., e.g., Nadaraya (1964, 1970), Watson (1964), Devroye and Wagner

(1980), Stone (1977, 1982), Devroye and Krzy»ak (1989)), partitioning regression estimates

(f., e.g., Györ� (1981), Beirlant and Györ� (1998)), nearest neighbor regression estimates

(f., e.g., Devroye (1982), Devroye et al. (1994)), least squares estimates (f., e.g., Lugosi

and Zeger (1995), Kohler (2000)) and smoothing spline estimates (f., e.g., Wahba (1990),

Kohler and Krzy»ak (2001)).

Minimax rate of onvergene results for the global errors of suh estimates have been

derived in Stone (1982). In partiular it was shown there, that in ase of the L2 error and

a (p, C)�smooth regression funtion the optimal rate of onvergene is

n− 2p
2p+d .

In the setting of �xed design regression estimation it was analyzed in Kohler (2014) how

the above rates of onvergene hanges if there is no noise in the dependent variable. The

main result there are that for suitably de�ned spline estimates the supremum norm error

onverges to zero with the rate

n− p

d
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(whih follows already from the bound (3)) and that this rate of onvergene is optimal in

some minimax sense.

For the problem studied in this artile Kohler and Krzy»ak (2013) showed that the

expeted L1-error of a nearest-neighbor estimate ahieves the rate of onvergene n− p

d
in

ase p ≤ 1. For d = 1 there was also an estimate onstruted whih ahieves this rate of

onvergene for arbitrary p.

In ontrast, our results onsider the supremum norm error and are appliable for general

p and d. Here it is natural to onjeture that results like (3) lead to bounds like (4), however

it is not lear how one an onstrut an estimate for random sattered data ahieving the

rate (4).

1.5 Notation

The sets of natural numbers, natural numbers inluding 0, and real numbers are denoted

by N, N0 and R, resp. The Eulidean norm of x ∈ R
d
is denoted by ‖x‖. For f : Rd → R

the expression ‖f‖∞ = supx∈Rd |f(x)| is its supremum norm, and the supremum norm of f

on a set A ⊆ R
d
is denoted by ‖f‖∞,A = supx∈A |f(x)|. Sr(x) is the (losed) ball of radius

r around x. A funtion f : Rd → R is alled (p, C)-smooth, where C > 0 and p = k + s

with k ∈ N0 and s ∈ (0, 1] hold, if for every α = (α1, . . . , αd) ∈ N
d
0 with

∑d
j=1 αj = k the

partial derivative

∂kf

∂x
α1
1 ...∂x

αd
d

exists and satis�es

∣

∣

∣

∣

∂kf

∂xα1
1 . . . ∂xαd

d

(x)−
∂kf

∂xα1
1 . . . ∂xαd

d

(z)

∣

∣

∣

∣

≤ C · ‖x− z‖s

for all x, z ∈ R
d
. For z ∈ R we denote the smallest integer greater than or equal to z by

by ⌈z⌉, and ⌊z⌋ denotes the largest integer less than or equal to z.

If not otherwise stated, any ci with i ∈ N here and in the following symbolizes a real

onstant, whih is nonnegative.
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1.6 Outline

In Setion 2 we de�ne our estimates, the main results are presented in Setion 3, several

simulations are presented in Setion 4, and Setion 5 ontains the proofs. An elementary

bound on a probability needed in one of our proofs is given in the appendix.

2. DEFINITION OF THE ESTIMATES

2.1 The Main Idea

In the sequel we want to estimate a funtion from noiseless observations of funtion values at

randomly sattered points. Here we want to �t a funtion from a given lass of funtions to

our data. For this we ould use, e.g., the priniple of the (penalized) least squares, however

this would not take advantage of the fat that our observations are noiseless and hene

highly trustworthy. Otherwise we ould try to interpolate our funtion values, however this

will ause problems sine our points will be irregularly spaed and onsequently some areas

of our sample spae will need muh more degrees of freedom of our interpolant than other

areas.

The key idea introdued in this paper is to �nd an estimate suh that the maximal

distane between its values and the observed funtion values is smaller than some threshold.

More preisely, well will hoose δn > 0 and a suitable funtion spae Fn, and will hoose

an estimate mn suh that mn ∈ Fn and |mn(Xi) −m(Xi)| ≤ δn for all i ∈ {1, . . . , n}. In

ase that Fn is a �nite dimensional linear vetor spae of funtions, linear programming

an be used to ompute suh an estimate.
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2.2 The Spline Estimate

In this subsetion we assume that m : Rd → R is (p, C)�smooth for C > 0 and p = k + s

with k ∈ N0 and s ∈ (0, 1]. In order to de�ne the spline estimate, a B-spline basis

of funtions with ompat support, whih spans the spae of polynomial splines (i.e., of

pieewise polynomials satisfying a global smoothness ondition) on [0, 1]d, is introdued.

De�nition 1. Choose K ∈ N, M ∈ N0 and set uj = j/K (j ∈ {−M, . . . , K +M}). The

(univariate) B-splines Bj,l : R → R of degree l are reursively de�ned by

(i)

Bj,0(x) =











1, x ∈ [uj, uj+1)

0, x /∈ [uj, uj+1)

for j = −M, . . . , K +M − 1 and

(ii)

Bj,l+1(x) =
x− uj

uj+l+1 − uj
Bj,l(x) +

uj+l+2 − x

uj+l+2 − uj+1
Bj+1,l(x)

for j = −M, . . . , K +M − l − 2 and l = 0, . . . ,M − 1.

The sequene (uj)j=−M,...,K+M is alled knot sequene and M is alled degree of the B-

splines.

In order to be able to de�ne spaes of multivariate funtions, the univariate B-splines are

ombined to form multivariate tensor produt B-splines.

De�nition 2. Choose K ∈ N and M ∈ N0. For j = (j1, . . . , jd) ∈ {−M, . . . , K +M}d the

tensor produt B-spline Bj,M : Rd → R is de�ned by

Bj,M (x) = Bj1,M

(

x(1)
)

· . . . · Bjd,M

(

x(d)
)

.
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For M ∈ N and K = Kn =
⌊

c5 · (n/ logn)
1/d
⌋

with a ertain c5 > 0 let {Bj,M : j ∈

{−M, . . . , Kn − 1}d} be the orresponding tensor produt B-splines. We de�ne our esti-

mate by

mn(x) =
∑

j∈{−M,...,Kn−1}d

ĉj · Bj,M (x)
(

x ∈ [0, 1]d
)

(5)

with oe�ients ĉj ∈ R suh that mn approximates the observed data. If the spline degree

M ∈ N ful�lls the ondition M ≥ k, then it follows from Theorem 1 in Kohler (2014)

that it is possible to hoose these oe�ients suh that |mn(x) − m(x)| ≤ c6 · K
−p
n holds

for a onstant c6 > 0 depending only on d,M, p and C. So we set δn = c7 · K
−p
n for a

suitably hosen c7 > 0 and hoose the oe�ients ĉj suh that the following n inequalities

are satis�ed:

|mn(Xi)−m(Xi)| ≤ δn (i = 1, . . . , n) . (6)

For n su�iently large and m (p, C)�smooth, the solution spae of this system of inequal-

ities must be non-empty beause of the above-mentioned result in Kohler (2014). Linear

programming an be used to ompute the oe�ients ĉj ∈ R.

3. MAIN RESULTS

We start with deriving an upper bound on the rate of onvergene of our estimate (5).

Theorem 1. Let X, X1, X2 be indepenent and identially distributed random variables

with values in R
d
. Assume that there exists a onstant c8 > 0 suh that

PX(Sr(x)) > c8 · r
d

does hold for all x ∈ [0, 1]d and all 0 < r ≤ 1. Let m : Rd → R be (p, C)�smooth for C > 0
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and p = k + s with k ∈ N0 and s ∈ (0, 1]. Choose M ∈ N with M ≥ k and set

Kn =

⌈

c9 ·

(

n

log n

)
1
d

⌉

and δn = c10 ·

(

logn

n

)p/d

.

Let mn be de�ned by (5) and (6). Then for c9 > 0 su�iently small and c10 > 0 su�iently

large we have

‖mn −m‖∞,[0,1]d = OP

(

(

log n

n

)p/d
)

.

Remark 1. The proof of Theorem 1 implies that the bound on the probability in Theorem

1 holds uniformly over the lass of (p, C)�smooth funtions (for a �xed distribution of X

satisfying the assumptions in Theorem 1, e.g., for uniform distribution on the unit ube).

More preisely, we an onlude from the proof of Theorem 1, that our estimate satis�es

for some c11 > 0

lim sup
n→∞

sup
m∈F(p,C)

P

{

‖mn −m‖∞,[0,1]d ≥ c11 ·

(

log n

n

)p/d
}

= 0,

where F (p,C)
denotes the set of all (p, C)-smooth funtions m : Rd → R .

Next we show that the rate of onvergene in Theorem 1 as formulated in Remark 1 is op-

timal whenever estimating (p, C)�smooth funtions from noiseless observations at random

points.

Theorem 2. Let p = k+s for some k ∈ N0 and s ∈ (0, 1] and let C > 0. Let F (p,C)
denote

the set of all (p, C)-smooth funtions m : Rd → R and let X1, . . . , Xn be independent and

uniformly distributed on [0, 1]d. Then there is a onstant c12 > 0 suh that

lim inf
n→∞

inf
mn

sup
m∈F(p,C)

P

{

‖mn −m‖∞,[0,1]d ≥ c12 ·

(

logn

n

)
p

d

}

> 0

holds.
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4. APPLICATION TO SIMULATED DATA

In this setion we apply the estimate developed in the previous setion to simulated data

and ompare the results with onventional estimates using the statistis pakage R.

For this purpose, we onsider three ompetitive approahes. The �rst one is interpolation

with radial basis funtions presented in Lazarro and Montefuso (2002), where authors use

Wendland's ompatly supported radial basis funtion φ(r) = (1 − r)6+ · (35r2 + 18r + 3).

The seond approah to whih we ompare our estimate is the moving least squares esti-

mate with the seond order polynomial basis and a quarti weight funtion as desribed

in Joldes et al. (2015), where we sale the radius of in�uene they used with respet to

the size of our estimation area and the sample size. Instead of their modi�ation we use

the Moore-Penrose generalized inverse of the matrix if it is singular beause this yields

to better results and works even for very ill-onditioned matries. The third approah is

thin plate spline estimate whose smoothing parameter is hosen by the generalized ross

validation as implemented by the routine Tps() of the library �elds in R.

The parameters M and K of our spline estimate de�ned in (6) are hosen adaptively by

ross validation allowing values from 1 to Mmax and Kmax, respetively. Mmax and Kmax

an take values up to 5 and 25, respetively depending on the examples, although the set

of possible hoies was redued for some settings if several test runs showed that the whole

range of hoies is not needed. The parameter δn is hosen as the smallest possible value

in {2i/n : i = −50, . . . , 30} suh that a solution of the linear program exists.

Table 1 shows the results arising from our experiments. Random variable X is uniformly

distributed on [0, 1]2 and we try six di�erent test funtions mi : [0, 1]
2 → R (i = 1, . . . , 6)
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Table 1: Median (IQR) of the errors of the estimates for m1, m2, m3, m4, m5, m6

funtion m1 n = 50 n = 100 n = 200

spline estimate 8.3e-10 (8.5e-10) 1.5e-10 (1.7e-10) 2.5e-11 (1.0e-11)

RBF interpolant 5.4e-1 (3.2e-1) 3.0e-1 (7.3e-2) 1.5e-1 (1.5e-1)

MLS estimate 5.6e-2 (3.5e-2) 4.0e-2 (1.5e-2) 3.1e-2 (5.0e-3)

thin plate spline 3.5e-1 (1.6e-1) 2.0e-1 (5.7e-2) 1.3e-1 (9.4e-2)

funtion m2 n = 50 n = 100 n = 200

spline estimate 1.8e-1 (3.4e-1) 1.1e-1 (1.1e-1) 5.0e-2 (7.0e-2)

RBF interpolant 1.2e0 (7.4e-1) 5.7e-1 (4.0e-1) 1.8e-1 (1.5e-1)

MLS estimate 2.2e-1 (1.4e-1) 9.4e-2 (4.2e-2) 9.0e-2 (2.0e-2)

thin plate spline 2.2e-1 (9.8e-2) 1.4e-1 (7.3e-2) 7.5e-2 (1.9e-2)

funtion m3 n = 50 n = 100 n = 200

spline estimate 1.7e-1 (1.8e-1) 4.4e-2 (6.4e-2) 2.2e-2 (2.1e-2)

RBF interpolant 3.8e-1 (2.8e-1) 1.6e-1 (2.2e-1) 8.4e-2 (6.2e-2)

MLS estimate 8.9e-2 (3.0e-2) 5.3e-2 (1.5e-2) 4.7e-2 (1.2e-2)

thin plate spline 1.4e-1 (8.8e-2) 8.4e-2 (3.2e-2) 5.8e-2 (2.3e-2)

funtion m4 n = 50 n = 100 n = 200

spline estimate 1.4e-1 (1.7e-1) 8.2e-3 (8.2e-3) 4.3e-3 (3.9e-3)

RBF interpolant 5.5e-2 (6.6e-2) 1.8e-2 (3.3e-2) 5.2e-3 (3.9e-3)

MLS estimate 8.3e-2 (2.7e-2) 3.2e-2 (7.1e-3) 2.7e-2 (6.5e-3)

thin plate spline 1.0e-1 (7.4e-2) 5.5e-2 (5.5e-2) 2.2e-2 (7.5e-3)

funtion m5 n = 50 n = 100 n = 200

spline estimate 2.8e-1 (3.0e-1) 2.0e-1 (1.8e-1) 5.4e-2 (7.6e-2)

RBF interpolant 3.2e-1 (1.3e-1) 1.6e-1 (1.1e-1) 6.1e-2 (2.9e-2)

MLS estimate 7.0e-1 (3.7e-1) 3.0e-1 (6.2e-2) 2.4e-1 (1.1e-1)

thin plate spline 7.8e-1 (3.3e-1) 4.5e-1 (2.6e-1) 1.9e-1 (8.8e-2)

funtion m6 n = 50 n = 100 n = 200

spline estimate 3.1e-1 (2.2e-1) 2.6e-1 (1.3e-1) 1.8e-1 (1.1e-1)

RBF interpolant 2.4e-1 (1.2e-1) 1.4e-1 (9.1e-2) 5.6e-2 (1.7e-2)

MLS estimate 1.3e-1 (4.8e-2) 8.8e-2 (7.0e-3) 8.5e-2 (7.2e-3)

thin plate spline 1.0e-1 (2.7e-2) 7.2e-2 (2.8e-2) 4.0e-2 (1.6e-2)
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with di�erent degrees of (p, C)�smoothness as illustrated in Figure 1 and de�ned as follows.

m1(x1, x2) = 3 · x2
1 · x2 − x3

2,

m2(x1, x2) = 2 · exp(−5 · (x1 − 0.7)2)− exp(−5 · (x1 − 0.4)2)− 3 · x2 + 5,

m3(x1, x2) =
1

x1 + x3
2 + 0.5

m4(x1, x2) = exp(−3 · ((x1 − 0.75)2 + (x2 − 0.75)2)),

m5(x1, x2) = sin(2 · π · x1) · cos(π · x2),

m6(x1, x2) = min {1− x2, 2 · x1 − 0.5} .

The estimates under onsideration are omputed for di�erent numbers (n = 50, 100, 200)

of independent realizations of X and their orresponding funtion values. Sine the results

of the simulations depend on the randomly hosen data points, we ompute the estimates

repeatedly (N = 50 times) for regenerated realizations of X and examine the median (plus

interquartile range IQR) of the supremum errors with respet to an equidistant grid of

width 0.02 on [0, 1]2. Examination of the results shows that, on the one hand, our general

spline estimate learly outperforms the omparative estimates in the polynomial ase of m1

(even for small sample sizes), whih ould have been expeted beause our estimate onsists

of pieewise polynomials. In addition to that, it has the smallest median error for inreasing

sample sizes in the moderately smooth ases of m2 to m5 (with only a omparatively small

advantage in the volatile ase of m5). On the other hand, it is relatively bad for all of the

onsidered sample sizes in the edged ase of m6, whih is not even di�erentiable, but it

improves steadily. All of these observations go well with the onvergene rates dedued in

the previous setions, whih depend on the (p, C)�smoothness of the funtion (f. Theorem

1).
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Figure 1: Behavior of the test funtions m1, m2, m3, m4, m5, m6.

5. PROOFS

5.1 Proof of Theorem 1

For the proof of Theorem 1 we need the following lemmata.

14



Lemma 1. Let Π be the ring of all polynomials p : Rd → R in d variables and let P be

a �nite�dimensional subspae of Π with dimension dimP. For almost any set X ⊂ R
d
of

interpolations sites with |X| = dimP there is an unique p ∈ P whih ful�lls p(x) = yx for

all x ∈ X and arbitrarily hosen values yx ∈ R.

Proof. The assertion of the lemma follows immediately from Proposition 4 in Jetter et al.

(2006). �

Lemma 2. Assume that the distribution of the i.i.d. random variables X,X1, . . . , Xn

satis�es PX (Sε(x)) ≥ c13 · ε
d
for all x ∈ [0, 1]d and ε ∈ (0, 1] where c13 > 0 is a onstant

and Sε(x) is the losed ball around x with radius ε. Let

Kn =

⌈

c9 ·

(

n

logn

)
1
d

⌉

.

Let B1, . . . , BKd
n
be Kd

n balls with radius c14 ·
1
Kn

, whose enters lie in [0, 1]d. For any r > 0,

there is a su�iently small c9 := c9(r, c13, c14) > 0, suh that

P
{

∀j ∈
{

1, . . . , Kd
n

}

∃i ∈
{

1, . . . ,
⌊n

r

⌋}

: Xi ∈ Bj

}

→ 1 (n → ∞).

Proof. We onsider the omplementary event of the above expression. By the union

bound, the independene of X1, . . . , X⌊n
r ⌋

and the assumption on the distribution of X we

get for su�iently large n

P
{

∃j ∈
{

1, . . . , Kd
n

}

: X1, . . . , X⌊n
r
⌋ /∈ Bj

}

≤
∑

j∈{1,...,Kd
n}

(1−PX (Bj))
⌊n
r
⌋

≤ Kd
n · max

j∈{1,...,Kd
n}

(1−PX (Bj))
⌊n
r
⌋

15



≤ Kd
n ·

(

1− c13 ·
cd14
Kd

n

)⌊n
r
⌋

≤ Kd
n · exp

(

−c13 · c
d
14 ·

n

2 · r ·Kd
n

)

≤ 2d · cd9 ·
n

logn
· exp

(

−c13 · c
d
14 ·

logn

2 · r · cd9

)

For su�iently small c9 the right-hand side of the inequality above tends to zero for n

tending to in�nity. �

Lemma 3. Let the random variables X,X1, . . . , Xn and the parameter Kn be hosen as in

Lemma 2. Let r ∈ N be an arbitrary onstant and let B1, . . . , Br·Kd
n
be r · Kd

n balls with

radius c14 ·
1

Kn
, whose enters lie in [0, 1]d. Then for c9 := c9(r, c13, c14) > 0 su�iently

small

P
{

∀j ∈
{

1, . . . , r ·Kd
n

}

∃i ∈ {1, . . . , n} : Xi ∈ Bj

}

→ 1 (n → ∞).

Proof. At �rst, we note that

P
{

∀j ∈
{

1, . . . , r ·Kd
n

}

∃i ∈ {1, . . . , n} : Xi ∈ Bj

}

≥

r
∏

k=1

P

{

∀j ∈
{

(k − 1) ·Kd
n + 1, . . . , k ·Kd

n

}

∃i ∈
{

(k − 1) ·
⌊n

r

⌋

+ 1, . . . , k ·
⌊n

r

⌋}

: Xi ∈ Bj

}

The assertion follows from the appliation of Lemma 2 for the inner expression. �
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Proof of Theorem 1. Let Qj(m) ∈ R be the oe�ients of the spline approximant of m

in Theorem 1 in Kohler (2014) whih ensures that

m̄n(x) =
∑

j∈{−M,...,Kn−1}d

Qj(m) · Bj,M(x)

ful�lls

|m̄n(x)−m(x)| ≤ c15 ·K
−p
n (7)

for all x ∈ [0, 1]d and a onstant c15 > 0. This together with (6) implies

|mn(Xi)− m̄n(Xi)| ≤ |mn(Xi)−m(Xi)|+ |m̄n(Xi)−m(Xi)|

≤ δn + c15 ·K
−p
n

≤ c16 · (logn/n)
p/d

(8)

for n su�iently large and an adequately hosen c16 > 0. Set

zj = ĉj −Qj(m)

for every j ∈ {−M, . . . , Kn − 1}d. Then

mn(x)− m̄n(x) =
∑

j∈{−M,...,Kn−1}d

zj · Bj,M (x)

holds, so we an onlude

|mn(x)− m̄n(x)| =

∣

∣

∣

∣

∣

∑

j∈{−M,...,Kn−1}d

zj · Bj,M (x)

∣

∣

∣

∣

∣

≤ max
j∈{−M,...,Kn−1}d

|zj|

for all x ∈ [0, 1]d, beause the B-splines are non-negative and sum up to 1 (f., e.g., Lemma

15.2 in Györ� et al. (2002)). Combining this with the previous bounds we get

|mn(x)−m(x)| ≤ |mn(x)− m̄n(x)|+ |m̄n(x)−m(x)|

17



≤ max
j∈{−M,...,Kn−1}d

|zj|+ c17 · (log n/n)
p/d

and from now on it su�es to show that we have outside of an event, whose probability

tends to zero for n → ∞, maxj∈{−M,...,Kn−1}d |zj| ≤ c18 · (log n/n)
p/d

for a ertain c18 > 0.

By (8) our estimate ful�lls

∑

j∈{−M,...,Kn−1}d

zj · Bj,M (Xi) = ε(i) (i = 1, . . . , n) (9)

for an adequately hosen

ε(i) ∈

[

−c16 ·

(

log n

n

)p/d

, c16 ·

(

logn

n

)p/d
]

for all i ∈ {1, . . . , n} . (10)

Next, onsider a �xed d�dimensional spline node interval Aj = (uj1, uj1+1)×· · ·×(ujd, ujd+1)

for an arbitrarily hosen j ∈ {−M, . . . , Kn − 1}d. Let Sj ⊆ {−M, . . . , Kn − 1}d ontain

exatly those indies k = (k1, . . . , kd) that ful�ll

ji −M ≤ ki ≤ ji (i ∈ {1, . . . , d}) .

If we put (M + 1)d di�erent values x1, . . . , x(M+1)d ∈ Aj in equations of the type (9), this

leads to the linear system of equations

∑

k∈Sj

zk ·Bk,M (xi) = ε(i) (i = 1, . . . , (M + 1)d), (11)

beause the rest of the B�spline terms vanishes on Aj. We will abbreviate (11) in matrix

notation by Bj · zj = εj. Beause the remaining B�splines are polynomials on this set, (11)

equals a polynomial interpolation problem on Aj.

Sine the B�splines are saled regarding Kn and Aj, we an onsider this polynomial in-

terpolation problem on (0, 1)d instead of Aj and with B�splines respeting this larger node

18



distane. Due to the loal linear independene of the B�splines (f. Lemma 14.5 in Györ�

et al. (2002)) the polynomials form a (M + 1)d�dimensional vetor spae. So aording to

Lemma 1 there is a set of distint points x̃1, . . . , x̃(M+1)d ∈ (0, 1)d (almost every set would

work), suh that this interpolation problem is uniquely solvable, whih means | det (Bj) |

is greater than zero. Moreover, the absolute value of the determinant of Bj is a ontinous

funtion regarding the inputs x̃1, . . . , x̃(M+1)d (sine the B�splines are ontinuous funtions

of their arguments for degree greater than zero). So there is a losed ball with radius c19

around all of these values, where | det (Bj) | ≥ cmin > 0 holds. Note that this argumentation

is independent of the size of Aj (whih depends on n), beause the B�splines are saled

aording to Aj by de�nition and the losed balls exist in a saled version with radius

c19 ·
1

Kd
n
in Aj. So cmin does not depend on n.

Due to Lemma 3 at least (M + 1)d of the realizationsXi fall into the above-mentioned om-

pat balls in Aj for su�iently large n. We all these realizations X̃1, . . . , X̃(M+1)d . Their

orresponding equations in (9) form a system like (11) whih an be solved by Cramer's

rule in the form of

zk =
det (Bj (k, εj))

det (Bj)

for all k ∈ Sj, where Bj (k, εj) symbolizes a version of Bj, in whih the olumn that belongs

to k is replaed by εj. The fat that the B�spline values and the determinant of Bj are

bounded allows the onlusion

|zk| =
| det (Bj (k, εj)) |

| det (Bj) |
≤

c19
cmin

· max
i=1,...,(M+1)d

|ε(i)| ≤ c18 ·

(

log n

n

)p/d

(12)

beause of (10). Sine the above argumentation works for all of the Aj simultaneously (f.,

Lemma 3), every zj in (9) an be bounded by (12), and this implies the assertion. �
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5.2 Proof of Theorem 2

Set Mn =
⌊

(2 · n/ logn)1/d
⌋

and let {An,j}j=1,...,Md
n
be a partition of [0, 1]d into ubes of

side length

1
Mn

. Choose a (p, 2s−1C)-smooth funtion g : Rd → R (where s omes from

the de�nition of the (p, C)�smoothness in the theorem) satisfying supp(g) ⊆
(

−1
2
, 1
2

)d

and reahing a ertain onstant c20 > 0 on its support, i.e., satisfying c20 = supx∈Rd g(x) =

g(x0) > 0 for some x0 ∈
(

−1
2
, 1
2

)d
. For j ∈

{

1, . . . ,Md
n

}

let an,j be the enter of An,j and set

gn,j(x) = M−p
n · g (Mn · (x− an,j)) . We de�ne m(cn) : Rd → R by m(cn) =

∑Md
n

j=1 cn,j · gn,j(x),

where cn = (cn,j)j=1,...,Md
n
∈ {−1, 1}M

d
n
.

The funtions m(cn)
are (p, C)-smooth for all (cn) ∈ {−1, 1}M

d
n
(f., e.g., Györ� et al.

(2002), proof of Theorem 3.2), hene we have

{

m(cn) : cn ∈ {−1, 1}M
d
n

}

⊆ F (p,C). (13)

Randomizing the oe�ients of this type of funtions we introdue random variables

Cn,1, . . . , Cn,Md
n
whih are independent from eah other and from X1, . . . , Xn, suh that

P {Cn,k = −1} = P {Cn,k = 1} = 1
2
for all k = 1, . . . ,Md

n , and we set Cn =
(

Cn,1, . . . , Cn,Md
n

)

.

Using the relationMn ≤ (2 · n/ logn)1/d, (13) allows the following bounding for an arbitrary

estimate mn:

sup
m∈F(p,C)

P

{

‖mn(·, (X1, m(X1)), . . . , (Xn, m(Xn)))−m‖∞,[0,1]d ≥ c20 ·

(

log n

2 · n

)
p

d

}

≥ sup
cn∈{−1,1}M

d
n

P

{

‖mn(·, (X1, m
(cn)(X1)), . . . , (Xn, m

(cn)(Xn)))−m(cn)‖∞,[0,1]d

≥ c20 ·M
−p
n

}

≥ P
{

‖mn(·, (X1, m
(Cn)(X1)), . . . , (Xn, m

(Cn)(Xn)))−m(Cn)‖∞,[0,1]d ≥ c20 ·M
−p
n

}

≥ P

{

∃j ∈
{

1, . . . ,Md
n

}

: X1 /∈ An,j, . . . , Xn /∈ An,j and
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|mn(x0,j, (X1, m
(Cn)(X1)), . . . , (Xn, m

(Cn)(Xn)))−m(Cn)(x0,j)| ≥ c20 ·M
−p
n

}

,

where x0,j = an,j + x0/Mn ∈ An,j. Sine the X1, . . . , Xn, Cn,1, . . . , Cn,Md
n
are independent,

we an reformulate the last probability as

∫

. . .

∫

I{∃j∈{1,...,Md
n} :x1 /∈An,j ,...,xn /∈An,j}

·P

{

|mn(x0,j, (x1, m
(Cn)(x1)), . . . , (xn, m

(Cn)(xn)))−m(Cn)(x0,j)| ≥ c20 ·M
−p
n

}

dPXn
(xn) . . . dPX1(x1).

By de�nition of x0 we have m
(Cn)(x0,j) = Cn,j ·M

−p
n ·g(x0) = c20 ·M

−p
n ·Cn,j. If a ertain An,j

does not ontain any of the x1, . . . , xn, then mn(x0,j , (x1, m
(Cn)(x1)), . . . , (xn, m

(Cn)(xn)))

is independent of Cn,j, from whih we an onlude that

P

{

|mn(x0,j , (x1, m
(Cn)(x1)), . . . , (xn, m

(Cn)(xn)))−m(Cn)(x0,j)| ≥ c20 ·M
−p
n

}

≥
1

2
.

Summarizing the above results we see that we have shown

sup
m∈F(p,C)

P

{

‖mn(·, (X1, m(X1)), . . . , (Xn, m(Xn)))−m‖∞,[0,1]d ≥ c20 ·

(

logn

2 · n

)
p
d

}

≥
1

2
·P
{

∃j ∈
{

1, . . . ,Md
n

}

: X1 /∈ An,j, . . . , Xn /∈ An,j

}

.

Hene it su�es to show that

lim inf
n→∞

P
{

∃j ∈
{

1, . . . ,Md
n

}

: X1 /∈ An,j, . . . , Xn /∈ An,j

}

> 0. (14)

The event in (14) desribes the random alloation of n balls intoMd
n urns and its probability

is the lassial probability of leaving at least one urn empty. We believe that its lower bound
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has already been omputed in the literature, but sine we ould not �nd a proper referene,

we provide the rigorous derivation of it below.

Sine the probability in (14) is monotonially inreasing in Mn, and sine Mn satis�es

for su�iently large n the relation Md
n ≥ ⌊n/(log n− log log n)⌋ , we an assume without

loss of generality that we have d = 1 and Mn = ⌊n/(logn− log log n)⌋ . Let Cj be the

event that An,j remains empty. Then we are interested in the probability P
{

⋃Md
n

j=1Cj

}

.

Aording to the inlusion-exlusion priniple (formula of Sylvester-Poinaré) it an be

written as

P

{

Mn
⋃

j=1

Cj

}

=

Mn
∑

k=1

∑

I⊆{1,...,Mn},
|I|=k

(−1)|I|−1
P

{

⋂

i∈I

Ci

}

=

Mn
∑

k=1

(−1)k−1 ·

(

Mn

k

)

·

(

1−
k

Mn

)n

.

By the tedious but not very di�ult proof it is possible to show that this probability tends

to 1− 1
e
for n tending to in�nity, whih implies the assertion (f., Appendix). �
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APPENDIX: Lower Bound for the Probability in the Proof

of Theorem 2

Lemma 4. Let n ∈ N and set Mn =
⌊

n
logn−log logn

⌋

. Then

Mn
∑

k=1

(−1)k−1 ·

(

Mn

k

)

·

(

1−
k

Mn

)n

→ 1−
1

e
(n → ∞).

Proof. Throughout the proof we will apply several times the following onsequene of the

Lagrange formula for the remainder of a Taylor expansion: For any x ∈ (0, 1) there exists

ξx ∈ (0, x) suh that

log(1− x) = −x −
1

2 · (1− ξx)2
· x2.

In the �rst step of the proof we show

(

Mn

k

)

·

(

1−
k

Mn

)n

→
1

k!
(n → ∞) (15)

for any k ∈ N0. Beause of

(

Mn

k

)

·

(

1−
k

Mn

)n

=
1

k!
·Mn · (Mn − 1) · · · (Mn − k + 1) ·

((

1−
1

Mn

)n)k

·







1− k
Mn

(

1− 1
Mn

)k







n

==
1

k!
· 1 ·

(

1−
1

Mn

)

· · ·

(

1−
k − 1

Mn

)

·

(

Mn ·

(

1−
1

Mn

)n)k

·







1− k
Mn

(

1− 1
Mn

)k







n

,

the assertion of step 1 follows from Mn → ∞ (n → ∞),






1− k
Mn

(

1− 1
Mn

)k







n

→ 1 (n → ∞) (16)
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and

Mn ·

(

1−
1

Mn

)n

→ 1 (n → ∞). (17)

Here (16) follows from

n ·

(

log

(

1−
k

Mn

)

− k · log

(

1−
1

Mn

))

= n ·

(

−
k

Mn
−

1

2 · (1− ξk/Mn
)2

·
k2

M2
n

− k ·

(

−
1

Mn
−

1

2 · (1− ξ1/Mn
)2

·
1

M2
n

))

=
n

M2
n

·

(

k

2 · (1− ξ1/Mn
)2

−
k2

2 · (1− ξk/Mn
)2

)

→ 0 (n → ∞).

Furthermore, the de�nition of Mn implies

logMn + n · log

(

1−
1

Mn

)

= logMn + n ·

(

−
1

Mn

−
1

2 · (1− ξ1/Mn
)2

·
1

M2
n

)

=

(

logMn −
n

Mn

)

−
1

2 · (1− ξ1/Mn
)2

·
n

M2
n

→ 0 (n → ∞),

hene also (17) holds.

In the seond step of the proof we show

∣

∣

∣

∣

(−1)k−1 ·

(

Mn

k

)

·

(

1−
k

Mn

)n∣
∣

∣

∣

≤
2k

k!
for all k ∈ {1, . . . ,Mn − 1} (18)

for n su�iently large.

Sine

log

(

1−
k

Mn

)

=
∞
∑

l=1

−1

l
·

(

k

Mn

)l

≤ k ·
∞
∑

l=1

−1

l
·

(

1

Mn

)l

= k · log

(

1−
1

Mn

)

,

we have

∣

∣

∣

∣

(−1)k−1 ·

(

Mn

k

)

·

(

1−
k

Mn

)n∣
∣

∣

∣

≤

(

Mn

k

)

·

(

1−
1
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)n·k
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≤
1

k!
·

(

Mn ·

(

1−
1

Mn

)n)k

≤
2k

k!
,

for n su�iently large, where the last inequality follows from (17).

In the third step of the proof we show the assertion. Here we apply the dominated

onvergene theorem together with (15) and (18) and onlude

Mn
∑

k=1

(−1)k−1 ·
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Mn

k

)

·

(

1−
k

Mn

)n

=

∞
∑

k=1

(−1)k−1 ·

(

Mn

k

)

·

(

1−
k

Mn

)n

· I{k≤Mn−1} →

∞
∑

k=1

(−1)k−1

k!
= 1−

1

e

for n → ∞. �
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