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Abstract

In this paper we study the problem of estimating a function from n noiseless obser-
vations of function values at randomly chosen points. These points are independent
copies of a random variable which has a density with respect to the Lebesgue-Borel
measure. This density is bounded away from zero on the unit cube and vanishes
outside. The function to be estimated is assumed to be (p, C')-smooth, i.e., (roughly
speaking) it is p-times continuously differentiable. Our main results are that the
supremum norm error of a suitably defined spline estimate is bounded in probability
by (log(n)/n)P/¢ for arbitrary p and d and that this rate of convergence is optimal in
minimax sense.

Keywords: nonparametric regression without noise, rate of convergence, spline estimate,
supremum norm error
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1. INTRODUCTION

1.1 Multivariate Scattered Data Approximation

Approximation problems in which the input data is a set of deterministic distinct points
are so-called scattered data approximation problems which have been extensively studied
in the literature. In a typical setting we are given a set of deterministic points (z;,y;) €
[0,1] x R? (i = 1,...,n) and try to find a function m from a given function space, e.g.,
a Sobolev space, that fits the data closely. In scattered data approximation the points are
not assumed to occupy a regular grid but rather are scattered around the space making the
reconstruction problem difficult. The most popular approaches include the moving least
squares approximation (Lancaster and Salkauskas (1981); Farwig (1986); Levin (1998);
Wendland (2001, 2005); Joldes et al. (2015)), schemes based on radial basis functions or
constant functions on spheres (Lazzaro and Montefusco (2002); Ohtake et al. (2005, 2006);
Narcowich et al. (2006); Johnson et al. (2009)), multiquadric interpolants (Micchelli
(1986)) and the smoothing spline approach. The latter one can be posed as the regularized
least squares problem where one minimizes the criterion > (m(z;) — y;)* + A||m||3; over
a class of functions H. The classes of functions include Beppo-Levi space (Johnson et al.
(2009)) and Reproducing Kernel Hilbert Space (Gia et al. (2006)). In the moving least
squares approach we seek function m* which is a solution of the following minimization

problem:
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ggg@(m(xz) yi) w(z, i)}, (1)
where P is a finite-dimensional subspace (usually spanned by polynomials) of a space of
continuous functions on a compact set 2. Weight functions w are typically local, radial

functions. It can be shown under mild conditions that the solution of problem (1) exists



and is unique (Wendland (2001)). For the rate of approximation define the separation

distance ¢x and the mesh norm hx o as follows:

ax = min ||z; — || and hxgq=sup min |z —z,,

1
2 1<j<k<n ze j€{l,..n}

where ||z|| denotes the Euclidean norm of x € R?. Assume that a global constant ¢; exists

such that the data separation condition

gx < hxao <c-qx (2)

holds on the data set. Then under the condition that €2 is compact and satisfies the so-called
cone condition we get for f € C?(2) the approximation bound ||m—m*||.q < c2-h% o, see,
Wendland (2001, 2005). Hence if z1,...,x, are scattered approximately evenly in [0, 1]¢,
we get

I =m0 o oo < €5+ 77, 3)

The approximation error bounds for the radial basis function interpolations may be found

in Wendland (2005) and Madych and Nelson (1992).

1.2 The Problem Studied in this Paper

In practice it is not clear especially in high dimensions at which locations an estimated
function should be sampled. A simple but effective way is to generate sampling points
randomly from the uniform distribution on a ball or cube. The rest of the paper will be
devoted to estimation of an unknown function m observed at such random scattered data.
Our main question is how the error bound in (3) changes in this case. Obviously the result
in (3) is not applicable in this case since condition (2) does not hold. Nevertheless it is

natural to conjecture that a bound similar to (3) should hold for suitably defined estimates,



even if the data points are randomly and not deterministically distributed. However, it is
not clear how the definition of the estimates should be changed in order to be able to show
such a result.

To formulate our problem precisely, let X, X1, ..., X,, be independent and identically
distributed random variables with values in [0,1]¢ and let m : [0,1]% — R be a (measur-
able) function. Given the data D, = {(X1,m(X1)),..., (X,, m(X,))} we are interested in
constructing an estimate m, = m,(-,D,) : R? — R such that the supremum norm error

[ — M| 0g,0,1¢ = SUPLe(o 1)¢ [Mn(2) — m(z)] is small.

1.3 Main Results

It is well-known that we need smoothness assumptions on m in order to derive nontrivial
results on the rate of convergence of the global error of a function estimate (cf., e.g., Gyorfi
et al. 2002, Theorem 3.1). In the sequel we assume that m is (p, C')-smooth for some
p =k + s for some k € Ny, s € (0,1] and C > 0, i.e., (roughly speaking, see below for
the exact definition) it is p-times continuously differentiable. Furthermore we will assume

throughout this paper that there exists a constant ¢, > 0 such that
Px(S,(2)) > ¢4 -1

does hold for all z € [0,1]¢ and all 0 < r < 1, where S,(z) denotes the (closed) ball of
radius 7 around z. (This condition is in particular satisfied if X has a density with respect
to the Lebesgue-Borel measure which is bounded away from zero on [0, 1]¢.) We will show
that in this case we can construct for an arbitrary p > 0 a spline estimate m,, = m,, (-, D,)

logn\*/*
[mn — m||oo,[0,1]d = Op (( o ) ) (4)

such that




where we write Z,, = Op(Y,) if the nonnegative random variables Z, and Y,, satisfy
lim, o limsup,,_,. . P{Z, > ¢-Y,} = 0. Furthermore we show that the above rate of

convergence is optimal in some minimax sense.

1.4 Discussion of Related Results

The estimation problem considered in this paper is a regression estimation problem without
noise in the dependent variable. The case with noise in the dependent variable has been
studied much more extensively in the literature. The common strategies comprise kernel
regression estimates (cf., e.g., Nadaraya (1964, 1970), Watson (1964), Devroye and Wagner
(1980), Stone (1977, 1982), Devroye and Krzyzak (1989)), partitioning regression estimates
(cf., e.g., Gyorfi (1981), Beirlant and Gyorfi (1998)), nearest neighbor regression estimates
(cf., e.g., Devroye (1982), Devroye et al. (1994)), least squares estimates (cf., e.g., Lugosi
and Zeger (1995), Kohler (2000)) and smoothing spline estimates (cf., e.g., Wahba (1990),
Kohler and Krzyzak (2001)).

Minimax rate of convergence results for the global errors of such estimates have been
derived in Stone (1982). In particular it was shown there, that in case of the L, error and

a (p, C')-smooth regression function the optimal rate of convergence is

__2p
n 2p+d,

In the setting of fixed design regression estimation it was analyzed in Kohler (2014) how
the above rates of convergence changes if there is no noise in the dependent variable. The
main result there are that for suitably defined spline estimates the supremum norm error

converges to zero with the rate

S
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(which follows already from the bound (3)) and that this rate of convergence is optimal in
some minimax sense.

For the problem studied in this article Kohler and Krzyzak (2013) showed that the
expected Lj-error of a nearest-neighbor estimate achieves the rate of convergence n~d in
case p < 1. For d = 1 there was also an estimate constructed which achieves this rate of
convergence for arbitrary p.

In contrast, our results consider the supremum norm error and are applicable for general
p and d. Here it is natural to conjecture that results like (3) lead to bounds like (4), however
it is not clear how one can construct an estimate for random scattered data achieving the

rate (4).

1.5 Notation

The sets of natural numbers, natural numbers including 0, and real numbers are denoted
by N, Ny and R, resp. The Euclidean norm of x € R? is denoted by ||z||. For f: R? — R
the expression || f|cc = sup,epa | f(2)| is its supremum norm, and the supremum norm of f
on a set A C R? is denoted by || f|lco.a = Sup,e4 |f(7)]. S-(z) is the (closed) ball of radius
r around x. A function f : RY — R is called (p,C)-smooth, where C' > 0 and p = k + s
with k € Ny and s € (0,1] hold, if for every o = (on,...,0q) € N§ with 37 | a; = k the

partial derivative mLfad exists and satisfies
Oz, *...0z,
ok f ok f

_ . <Oy — 5|I®
0:10?1...0263‘1(:6) 8x‘f‘1...8x3d(z) <Cllz =4

for all x, 2 € R%. For z € R we denote the smallest integer greater than or equal to z by
by [z], and |z]| denotes the largest integer less than or equal to z.
If not otherwise stated, any ¢; with ¢ € N here and in the following symbolizes a real

constant, which is nonnegative.



1.6 Outline

In Section 2 we define our estimates, the main results are presented in Section 3, several
simulations are presented in Section 4, and Section 5 contains the proofs. An elementary

bound on a probability needed in one of our proofs is given in the appendix.

2. DEFINITION OF THE ESTIMATES

2.1 The Main Idea

In the sequel we want to estimate a function from noiseless observations of function values at
randomly scattered points. Here we want to fit a function from a given class of functions to
our data. For this we could use, e.g., the principle of the (penalized) least squares, however
this would not take advantage of the fact that our observations are noiseless and hence
highly trustworthy. Otherwise we could try to interpolate our function values, however this
will cause problems since our points will be irregularly spaced and consequently some areas
of our sample space will need much more degrees of freedom of our interpolant than other
areas.

The key idea introduced in this paper is to find an estimate such that the maximal
distance between its values and the observed function values is smaller than some threshold.
More precisely, well will choose 6, > 0 and a suitable function space F,,, and will choose
an estimate m,, such that m,, € F,, and |m,(X;) — m(X;)| <6, foralli € {1,...,n}. In
case that F, is a finite dimensional linear vector space of functions, linear programming

can be used to compute such an estimate.



2.2 The Spline Estimate

In this subsection we assume that m : R — R is (p, C')-smooth for C' > 0 and p = k + s
with & € Ny and s € (0,1]. In order to define the spline estimate, a B-spline basis
of functions with compact support, which spans the space of polynomial splines (i.e., of

piecewise polynomials satisfying a global smoothness condition) on [0,1]¢, is introduced.

Definition 1. Choose K € N, M € Ny and set u; = j/K (j € {—-M,..., K +M}). The
(univariate) B-splines B;; : R — R of degree | are recursively defined by

(i)
B,o(x) 1, =€ ujuj)

0, = ¢ [uj,uj41)
forg=—M,..., K+ M —1 and
(ii)
T — Uj

Ujyi42 — T
B; =" 3 B 2 B,
j1(2) PR— () + ites — j+1(2)

foryj=—M,... K+M—-1—-2andl=0,...,.M — 1.

The sequence (uj)j:_M K4 18 called knot sequence and M is called degree of the B-

.....

splines.

In order to be able to define spaces of multivariate funtions, the univariate B-splines are

combined to form multivariate tensor product B-splines.

Definition 2. Choose K € N and M € Ny. Forj= (ji,...,ja) € {-M, ..., K + M}" the
tensor product B-spline Bj r : R? — R is defined by

Biu () = By ar (z) . Bjyar (219).



For M € Nand K = K, = {05 . (n/logn)l/dJ with a certain ¢5 > 0 let {Bjn : j €
{-M,.. K, — l}d} be the corresponding tensor product B-splines. We define our esti-
mate by

my () = > & - By (v)  (x€[0,1]9) (5)

with coefficients ¢; € R such that m,, approximates the observed data. If the spline degree
M € N fulfills the condition M > k, then it follows from Theorem 1 in Kohler (2014)
that it is possible to choose these coefficients such that |m,(x) — m(z)| < ¢ - K, ? holds
for a constant ¢g > 0 depending only on d, M,p and C. So we set 6, = c7 - K, P for a
suitably chosen c¢; > 0 and choose the coefficients ¢; such that the following n inequalities
are satisfied:

ma(X) = m(X)| <80 (i=1,....m). (6)

For n sufficiently large and m (p, C')-smooth, the solution space of this system of inequal-
ities must be non-empty because of the above-mentioned result in Kohler (2014). Linear

programming can be used to compute the coefficients ¢; € R.

3. MAIN RESULTS

We start with deriving an upper bound on the rate of convergence of our estimate (5).

Theorem 1. Let X, X, X5 be indepenent and identically distributed random variables

with values in R?. Assume that there exists a constant cs > 0 such that
Px(S,(z)) > cg -

does hold for all z € [0,1]¢ and all 0 <7 < 1. Let m : R4 — R be (p, C)—smooth for C > 0



and p =k + s with k € Ny and s € (0,1]. Choose M € N with M > k and set

é 1 p/d
K, =|c- n and 0, = cip - ogn .
logn n

Let m,, be defined by (5) and (6). Then for cg > 0 sufficiently small and c19 > 0 sufficiently

log n\
M — Mo j0,1¢ = Op (( - ) :

Remark 1. The proof of Theorem 1 implies that the bound on the probability in Theorem

large we have

1 holds uniformly over the class of (p,C')-smooth functions (for a fixed distribution of X
satisfying the assumptions in Theorem 1, e.g., for uniform distribution on the unit cube).
More precisely, we can conclude from the proof of Theorem 1, that our estimate satisfies
for some ¢;; >0

, log n\ ”/*
limsup sup P< |m, — m”oo7[071}d > - =0,
n

n—o0  meF®C)

where F®¢) denotes the set of all (p, C')-smooth functions m : R — R .

Next we show that the rate of convergence in Theorem 1 as formulated in Remark 1 is op-
timal whenever estimating (p, C')-smooth functions from noiseless observations at random

points.

Theorem 2. Let p = k+s for some k € Ny and s € (0,1] and let C > 0. Let FP) denote
the set of all (p,C)-smooth functions m : RT — R and let X,,..., X, be independent and
uniformly distributed on [0,1]%. Then there is a constant c1o > 0 such that

P
] d
liminfinf sup P {Hmn — 1|00, j0,17¢ > C12 - ( ogn) } >0
n

n—oo Mn mG]-—(p’C)

holds.
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4. APPLICATION TO SIMULATED DATA

In this section we apply the estimate developed in the previous section to simulated data
and compare the results with conventional estimates using the statistics package R.

For this purpose, we consider three competitive approaches. The first one is interpolation
with radial basis functions presented in Lazarro and Montefusco (2002), where authors use
Wendland’s compactly supported radial basis function ¢(r) = (1 —r)% - (35r* 4 187 + 3).
The second approach to which we compare our estimate is the moving least squares esti-
mate with the second order polynomial basis and a quartic weight function as described
in Joldes et al. (2015), where we scale the radius of influence they used with respect to
the size of our estimation area and the sample size. Instead of their modification we use
the Moore-Penrose generalized inverse of the matrix if it is singular because this yields
to better results and works even for very ill-conditioned matrices. The third approach is
thin plate spline estimate whose smoothing parameter is chosen by the generalized cross
validation as implemented by the routine Tps() of the library fields in R.

The parameters M and K of our spline estimate defined in (6) are chosen adaptively by
cross validation allowing values from 1 to M,,,, and K,,.., respectively. M., and K.,
can take values up to 5 and 25, respectively depending on the examples, although the set
of possible choices was reduced for some settings if several test runs showed that the whole
range of choices is not needed. The parameter d,, is chosen as the smallest possible value

in {2'/n:i = —50,...,30} such that a solution of the linear program exists.

Table 1 shows the results arising from our experiments. Random variable X is uniformly

distributed on [0,1]* and we try six different test functions m; : [0,1]* = R (i = 1,...,6)

11



Table 1: Median (IQR) of the errors of the estimates for my, ms, ms, my, ms, mg

function m;

n = 50

n = 100

n = 200

spline estimate

8.35-10 (8.5E-10)

1.5e-10 (1.7E-10)

2.5E-11 (1.0E-11)

RBF interpolant

5.4E-1 (3.2E-1)

3.0E-1 (7.3E-2)

1.56-1 (1.5E-1)

MLS estimate

5.6E-2 (3.5E-2)

4.08-2 (1.5E-2)

3.18-2 (5.0E-3)

thin plate spline

3.5E-1 (1.6E-1)

2.0E-1 (5.7E-2)

1.3e-1 (9.4E-2)

function m,

n = 50

n = 100

n = 200

spline estimate

1.8E-1 (3.4E-1)

1.16-1 (1.1E-1)

5.0E-2 (7.0E-2)

RBF interpolant

1.2E0 (7.4E-1)

5.7E-1 (4.0E-1)

1.88-1 (1.5E-1)

MLS estimate

2.2E-1 (1.4E-1)

9.4E-2 (4.2E-2)

9.0E-2 (2.0E-2)

thin plate spline

2.26-1 (9.8E-2)

1.4E-1 (7.38-2)

7.5E-2 (1.9E-2)

function mg

n = 50

n = 100

n = 200

spline estimate

1.78-1 (1.88-1)

4.45-2 (6.45-2)

2.2E-2 (2.1E-2)

RBF interpolant

3.8E-1 (2.8E-1)

1.68-1 (2.2E-1)

8.4E-2 (6.2E-2)

MLS estimate

8.9E-2 (3.0E-2)

5.3E-2 (1.5E-2)

478-2 (1.28-2)

thin plate spline

1.4E-1 (8.8E-2)

8.4E-2 (3.2E-2)

5.8E-2 (2.3E-2)

function my

n = 50

n = 100

n = 200

spline estimate

1.4e-1 (1.7E-1)

8.2E-3 (8.2E-3)

4.38-3 (3.98-3)

RBF interpolant

5.5E-2 (6.6E-2)

1.8E-2 (3.3E-2)

5.28-3 (3.9E-3)

MLS' estimate

8.3E-2 (2.7E-2)

3.2E-2 (7.1E-3)

2.7E-2 (6.5E-3)

thin plate spline

1.0E-1 (7.4E-2)

2.28-2 (7.5E-3)

function my

n = 50

n =10

n = 200

spline estimate

2.8E-1 (3.06-1)

(
(
5.5E-2 (5.5E-2)
0
(

2.08-1 (1.8E-1)

5.4E-2 (7.6E-2)

RBF interpolant

3.26-1 (1.3E-1)

1.66-1 (1.1E-1)

6.18-2 (2.9E-2)

MLS estimate

7.0E-1 (3.7E-1)

3.0E-1 (6.2E-2)

2.48-1 (1.1E-1)

thin plate spline

7.8E-1 (3.3E-1)

4.5E-1 (2.6E-1)

1.98-1 (8.8E-2)

function mg

n = 50

n = 100

n = 200

spline estimate

3.1E-1 (2.2E-1)

2.68-1 (1.3E-1)

1.86-1 (1.1E-1)

RBF interpolant

2481 (1.28-1)

1.4E-1 (9.1E-2)

5.6E-2 (1.7E-2)

MLS' estimate

1.3e-1 (4.8E-2)

8.88-2 (7.0E-3)

8.5E-2 (7.2E-3)

thin plate spline

1.0E-1 (2.7E-2)

7.2E-2 (2.8E-2)

4.0E-2 (1.6E-2)
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with different degrees of (p, C')-smoothness as illustrated in Figure 1 and defined as follows.

my(z1,22) = 3-27 19 — 23,

mo(z1,29) = 2-exp(=5- (21 —0.7)?) —exp(—5- (v, —0.4)*) =329 + 5,
( ) = 1

ma\TL,T2) = 1+ 25+ 0.5

my(x1,29) = exp(=3- ((x1 —0.75)% + (x5 — 0.75)?)),

my(z1,x2) = sin(2-7-xq) - cos(m - x3),

me(z1,22) = min{l —x9,2 27 —0.5}.

The estimates under consideration are computed for different numbers (n = 50, 100, 200)
of independent realizations of X and their corresponding function values. Since the results
of the simulations depend on the randomly chosen data points, we compute the estimates
repeatedly (N = 50 times) for regenerated realizations of X and examine the median (plus
interquartile range IQR) of the supremum errors with respect to an equidistant grid of
width 0.02 on [0, 1]2. Examination of the results shows that, on the one hand, our general
spline estimate clearly outperforms the comparative estimates in the polynomial case of m;
(even for small sample sizes), which could have been expected because our estimate consists
of piecewise polynomials. In addition to that, it has the smallest median error for increasing
sample sizes in the moderately smooth cases of my to ms (with only a comparatively small
advantage in the volatile case of mj;). On the other hand, it is relatively bad for all of the
considered sample sizes in the edged case of mg, which is not even differentiable, but it
improves steadily. All of these observations go well with the convergence rates deduced in

the previous sections, which depend on the (p, C')-smoothness of the function (cf. Theorem

1).

13



Figure 1: Behavior of the test functions mq, mg, ms, my, ms, me.

5. PROOFS

5.1 Proof of Theorem 1

For the proof of Theorem 1 we need the following lemmata.

14



Lemma 1. Let I be the ring of all polynomials p : R — R in d variables and let P be
a finite-dimensional subspace of I1 with dimension dimP. For almost any set X C R of
interpolations sites with | X| = dim P there is an unique p € P which fulfills p(x) = y, for

all x € X and arbitrarily chosen values y, € R.

Proof. The assertion of the lemma follows immediately from Proposition 4 in Jetter et al.

(2006). 0

Lemma 2. Assume that the distribution of the i.i.d. random wvariables X, Xq,..., X,
satisfies Px (S.(z)) > ¢13 - € for all z € [0,1])" and & € (0,1] where ¢13 > 0 is a constant

and S (x) is the closed ball around x with radius . Let

= {Cg' (10;1)1 |

Let By, ..., Bga be K4 balls with radius cy4 - K%L, whose centers lie in [0, 1]d. For anyr > 0,

there is a sufficiently small cg := cy(r, c13,c14) > 0, such that

P{Vje{l,...,[(ff} 3¢e{1,...,PJ}:Xiij}—>1 (n — o0).

r

Proof. We consider the complementary event of the above expression. By the union

T

bound, the independence of X1, ... ,XLnJ and the assumption on the distribution of X we
get for sufficiently large n

P{3je{l,. K} : Xi,.. X2 ¢ By}

(1—Px (B)+

(]

15



; A\
S Kn . (1 — (13 )

Kd
n
< K4. —ia . —
—= n eXp( C13 " C1y QTKg)
n logn
< 2d.¢d. e —cyg -t ——
- 7 logn Xp( B

For sufficiently small ¢ the right-hand side of the inequality above tends to zero for n

tending to infinity. O
Lemma 3. Let the random variables X, X1, ..., X, and the parameter K, be chosen as in
Lemma 2. Let v € N be an arbitrary constant and let By, ..., B, g4 be 1 - K2 balls with
radius ¢4 - K%L’ whose centers lie in |0, 1]d. Then for co = co(r,c13,c14) > 0 sufficiently
small

P{vje{l,...,r-Kl} 3ie{l,....n}: X;€B;} -1 (n— o0).
Proof. At first, we note that
P{vje{l,...,r-K¢} Jie{l,....,n}: X, € B;}

ZHP{WG{(k—l)-Kferl,...,k-Kff}

aie{(k—l)- L;thl,...,k{;J}:Xiij}

The assertion follows from the application of Lemma 2 for the inner expression. 0

16



Proof of Theorem 1. Let Q);(m) € R be the coefficients of the spline approximant of m
in Theorem 1 in Kohler (2014) which ensures that

mae)= > Qm)-Byu(a)

je{-M,...K,—1}¢
fulfills
My (x) —m(z)| < c5 - K7 (7)

for all 2 € [0,1]* and a constant ¢;5 > 0. This together with (6) implies
[ (X) = M (X3)| < | (Xi) — m(XG)| + M (Xi) — m(X)]
< 0p+oci5- KP

< ¢16- (logn/n)"/ (8)
for n sufficiently large and an adequately chosen c;5 > 0. Set
5 = ¢ — Q3(m)
for every j € {—M, ..., K, —1}*. Then

M () — 1 () = >, %+ Bj ()
je{—M,...K,—1}¢
holds, so we can conclude
| () — M ()] = > % Bju(x) | < max [z
je{-M,...K,—1}¢

for all z € [0, 1]¢, because the B-splines are non-negative and sum up to 1 (cf., e.g., Lemma

15.2 in Gyorfi et al. (2002)). Combining this with the previous bounds we get
mn () — m(@)| < [ma(x) = mn ()] + [mn(r) = m(z)]
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< max 2] + 17 - (log n/n)P/?
je{—M,.. . K,—1}¢

and from now on it suffices to show that we have outside of an event, whose probability
tends to zero for n — oo, max;c, 5, g gye 2] < s - (log n/n)P/¢ for a certain c;g > 0.

By (8) our estimate fulfills

> % By (X)) =¢e(i) (i=1,...,n) (9)

je{—M,...K,—1}¢

for an adequately chosen

1 p/d 1 p/d
E(Z) € [_016 . ( O,rgln) ,C16 * ( Ogn) for all ¢ c {1, .. .,’I’L} . (10)

n

Next, consider a fixed d-dimensional spline node interval A; = (u;,, wj,+1) %+ - - X (w;,, j,+1)
for an arbitrarily chosen j € {—M,... K, —1}%. Let & C {—M,..., K, — 1}* contain
exactly those indices k = (ky, ..., kq) that fulfill

If we put (M + 1)? different values x,, ... ,T(m+1)d € Aj in equations of the type (9), this

leads to the linear system of equations

> ac Brar () = (i) (i=1,...,(M+1)", (11)

kESj

because the rest of the B-spline terms vanishes on A;. We will abbreviate (11) in matrix
notation by Bj - z; = ¢;. Because the remaining B-splines are polynomials on this set, (11)
equals a polynomial interpolation problem on A;.

Since the B-splines are scaled regarding K, and Aj, we can consider this polynomial in-

terpolation problem on (0, 1)¢ instead of A; and with B-splines respecting this larger node
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distance. Due to the local linear independence of the B—splines (cf. Lemma 14.5 in Gyorfi
et al. (2002)) the polynomials form a (M + 1)%-dimensional vector space. So according to
Lemma 1 there is a set of distinct points Z1, ..., Zr11)e € (0, 1)? (almost every set would
work), such that this interpolation problem is uniquely solvable, which means |det (B;) |
is greater than zero. Moreover, the absolute value of the determinant of B; is a continous
function regarding the inputs 71, ..., Z(ar41ye (since the B—splines are continuous functions
of their arguments for degree greater than zero). So there is a closed ball with radius cig
around all of these values, where | det (B;) | > ¢min > 0 holds. Note that this argumentation
is independent of the size of A; (which depends on n), because the B-splines are scaled
according to A; by definition and the closed balls exist in a scaled version with radius
C1g * Kig in A;. So cpin does not depend on n.

Due to Lemma 3 at least (M + 1)* of the realizations X; fall into the above-mentioned com-
pact balls in A; for sufficiently large n. We call these realizations Xi, ..., X(M+1)d. Their
corresponding equations in (9) form a system like (11) which can be solved by Cramer’s

rule in the form of
det (B; (k, &5))
Zk =
det (BJ)

for all k € S;, where B; (k, ¢5) symbolizes a version of Bj, in which the column that belongs

to k is replaced by e;. The fact that the B-spline values and the determinant of B; are

bounded allows the conclusion

| det (B; (k, &5)) | C19 .
|Zk| | det (BJ) ‘ = Coin i:l,.I.T,l(%\:/)[(-‘rl)d ‘€<Z)| = Ci18

(12)

because of (10). Since the above argumentation works for all of the A; simultaneously (cf.,

Lemma 3), every z; in (9) can be bounded by (12), and this implies the assertion. O
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5.2 Proof of Theorem 2

.....

side length Min Choose a (p,2°~1C)-smooth function g : R? — R (where s comes from
the definition of the (p,C')-smoothness in the theorem) satisfying supp(g) C (— ,%)d
and reaching a certain constant cyy > 0 on its support, i.e., satisfying cyp = sup,cpa 9(z) =
g(zo) > 0 for some xy € (—%, %)d. For j € {1, el Mff} let a,, ; be the center of A,, ; and set
Gnj(2) = M;P-g (M, - (z — a,;)). We define m(e) : R — R by m() = Z]Aigl Cnj* In,j (),

The functions m() are (p,C)-smooth for all (c,) € {—1,1}M’(z (cf., e.g., Gyorfi et al.
(2002), proof of Theorem 3.2), hence we have

{m e e {—1,11} ¢ FrO), (13)
Randomizing the coefficients of this type of functions we introduce random variables
Cn1s -+, Cy pa which are independent from each other and from Xi,..., X, such that
P{Cpy=—-1}=P{C, =1} =3 forallk=1,..., M and weset C,, = (Cp1,...,Cppsa) -
Using the relation M, < (2-n/logn)"%, (13) allows the following bounding for an arbitrary
estimate m,,:

logn a
sup P {Hmn(, (X1, m(X1)),. .., (Xn,m(Xn))) — Mmoo 0,174 > €20 - (2 ) }
meF®.0) .n

d
cne{—1,1}Mn

> sup P{ Hmn<7 <X17 m(cn)(X1>>’ ) (Xm m(cn)<Xn))) - m(cn)HOO,[Ovl}d

> € - Mn_p}
> P {[lma (-, (X0, m (X)), (X, m (X)) = m )| o e > c20 - M}

ZP{H] € {]_,,Mg} :Xl ¢An7j7---aXn¢An7j and
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[ (0, (X1, m ) (X1)), ., (X, D (X)) = m! ) (wo,)] > ex0 - M"_p}’

where zg; = a,; + xo/M, € A, ;. Since the Xy, ..., X,,, Cy1, ..., Cn,me are independent,

we can reformulate the last probability as

~P{\mn(xo,ja (w1, M (@), . (@, m O (@0))) = m T (204)] > 20 - Mn”}

dPXn(xn) . dPX1 (.I‘l)

By definition of zq we have m(C”)(xovj) =Chpj-M;P-g(xg) = co0- M ?-C,, ;. If a certain A, ;
does not contain any of the xy, ..., z,, then m,(zo, (1, ) (1)), ..., (v, m ) (z,)))

is independent of C,, ;, from which we can conclude that

DO | —

P{\mn(xo,ja (w1, m ) (@1)), s (2, m ) (@) = m O (20,5)] > ex0 - Mn”} >

Summarizing the above results we see that we have shown

sup P {Hmn(, (X1, m(X1)), -+« (X (X)) = Moo o172 = €20 - (10%") 3}

meF®.0) 2-n

1
> 5.P{aj e{l,... M} Xi ¢ Ay . Xn ¢ Anj}.
Hence it suffices to show that

liminfP {3j e {1,.... M} : X1 ¢ A, ;,.... X, ¢ A4, ,;} > 0. (14)

n—oo

The event in (14) describes the random allocation of n balls into M¢ urns and its probability

is the classical probability of leaving at least one urn empty. We believe that its lower bound
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has already been computed in the literature, but since we could not find a proper reference,
we provide the rigorous derivation of it below.

Since the probability in (14) is monotonically increasing in M,,, and since M,, satisfies
for sufficiently large n the relation M? > |n/(logn — loglogn)|, we can assume without
loss of generality that we have d = 1 and M, = [n/(logn —loglogn)|. Let C; be the
event that A, ; remains empty. Then we are interested in the probability P {U]]Vfl Cj}.
According to the inclusion-exclusion principle (formula of Sylvester-Poincaré) it can be

written as

k=1 IC{1,..., Mp}, 1€l
|I|=k
B k M,)
k=1
By the tedious but not very difficult proof it is possible to show that this probability tends
to 1 — é for n tending to infinity, which implies the assertion (cf., Appendix). O
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APPENDIX: Lower Bound for the Probability in the Proof

of Theorem 2

Lemma 4. LetneNandsetMn:{mJ. Then
M, n
- M, k 1
S DL B [P (e 1— - .
S () (1-9p) 21t o

k=1
Proof. Throughout the proof we will apply several times the following consequence of the

Lagrange formula for the remainder of a Taylor expansion: For any x € (0,1) there exists

1 2

& € (0,2) such that
log(l—2)= -2 — ———— 2"
og(l — ) x R TEAE x
In the first step of the proof we show
M, E\" 1
n . _ _ 1
(k) <1 Mn) 5L (o oo) (15)
for any k € Ny. Because of
M, 1_i '
k M,
—_— . 1. 1_L 1_k LY. M, - 1_L 2 ]
1=
the assertion of step 1 follows from M,, — oo (n — o0),
-
= =1 (n—o0) (16)
b
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" M,, - (1—ML>H—> 1 (n— o0). (17)

Here (16) follows from

oo ) )

B k 1 k2 I 1 1 1

- <_E_2'(1—5k/1wn)2 M '(_E_?(l—fi/Mn)Q ﬁﬁ))
n k k?

:ﬁ%. (2‘(1_61/Mn)2 _2'(1_€k/Mn)2) =0 (n— 0).

Furthermore, the definition of M,, implies

1
log M, -1 1——
og +n og( Mn)

1 1 1
=log M, I R
o8 *”( M, za—&mu2w@)
n

1
NN (n = 00),

= (logM, — — ) —
(% zm) 2 (1= &) M2

hence also (17) holds.
In the second step of the proof we show

o () (o)

for n sufficiently large.

2k:
< o7 forallke{l... M, -1} (18)

Since
k R, | g * 1 1\ 1
e (1 Mn) =1 [ (Mn) =4 =1 ! (Mn) o log (1 Mn) ’

we have




n\ k k
1 1 2
< . 1o — < 2
< g (e (-5g) ) <%
for n sufficiently large, where the last inequality follows from (17).

In the third step of the proof we show the assertion. Here we apply the dominated

convergence theorem together with (15) and (18) and conclude

o (1) (-

k=1
= vt (M, k" = (-1 1

(]

k=1

for n — oo.
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