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ON HOMOGENEOUS MANIFOLDS WHOSE ISOTROPY ACTIONS
ARE POLAR

JOSÉ CARLOS DÍAZ-RAMOS, MIGUEL DOMÍNGUEZ-VÁZQUEZ, AND ANDREAS KOLLROSS

Abstract. We show that simply connected Riemannian homogeneous spaces of compact
semisimple Lie groups with polar isotropy actions are symmetric, generalizing results of
Fabio Podestà and the third named author. Without assuming compactness, we give a
classification of Riemannian homogeneous spaces of semisimple Lie groups whose linear
isotropy representations are polar. We show for various such spaces that they do not have
polar isotropy actions. Moreover, we prove that Heisenberg groups and non-symmetric
Damek-Ricci spaces have non-polar isotropy actions.

1. Introduction

Symmetric spaces are a central class of examples in Riemannian geometry. It has often
been a fruitful approach to study to what extent certain properties of symmetric spaces
continue to hold for more general classes of Riemannian manifolds. This point of view
has, for example, led to the exploration of g.o.-spaces and the discovery of Damek-Ricci
harmonic spaces.

In this article, we study the question whether another well-known property of Riemann-
ian symmetric spaces, namely the polarity of their isotropy actions, holds for more general
types of homogeneous manifolds. We say that an isometric Lie group action on a Riemann-
ian manifold is polar if there exists an embedded closed submanifold Σ which intersects all
orbits of the group action and such that at each point p ∈ Σ the intersection of the orbit
through p with the submanifold Σ is orthogonal. Such a submanifold Σ is called a section
of the polar action. A polar action is called hyperpolar if it has a section which is flat in
its induced Riemannian metric.

The isotropy actions of Riemannian symmetric spaces are well-known to be polar, in fact
they are hyperpolar. Indeed, the maximal flats of the symmetric space, i.e. the maximal
totally geodesic and flat subspaces, provide sections. More precisely, any maximal flat
containing p is a section for the isotropy action at p, i.e. the action of H on M = G/H
given by h · gH = hgH, where G is (the connected component of the identity of) the
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isometry group of M and H = Gp its isotropy subgroup at p. For example, a compact Lie
group L with biinvariant metric is a Riemannian symmetric space, its isotropy action at
the identity element e is given by the action of L on itself by conjugation, and the maximal
tori are the sections for this action.

In order to determine if polar isotropy also occurs in other classes of Riemannian ho-
mogeneous spaces, it is a natural first step to consider their isotropy representation. The
isotropy representation of H on M = G/H is the linear action of H on TpM , where
h · v = Dph(v), i.e. the action given by the differentials of the isometries h ∈ H, which
are linear endomorphisms of TpM . Since slice representations of polar actions are polar,
cf. [17, Thm. 4.6], it follows that the linear isotropy representation of H on the tangent
space TpM is polar whenever the isotropy action of H on G/H is polar. However, the
converse is not true, as was shown in [14]; see Propositions 3.1 and 3.3 below for more
counterexamples.

Our main result is the following.

Theorem 1.1. Let G be a simply connected compact semisimple Lie group and let H be a
closed connected non-trivial proper subgroup. Let the homogeneous manifold M = G/H be
endowed with a G-invariant Riemannian metric µ. Then the isotropy action of H on G/H
is polar with respect to µ if and only if the Riemannian manifold (G/H, µ) is a Riemannian
symmetric space.

This is a generalization of [14], where the statement of Theorem 1.1 was shown in the
special case where G is simple. Furthermore, all G/H with G semisimple and compact
with polar linear isotropy representation were classified in [14].

Since actions of cohomogeneity one are polar, our main result can be viewed as a general-
ization of the well-known fact that two-point homogeneous spaces are rank-one symmetric
spaces in the special case of homogeneous spaces of semisimple compact Lie groups. Other
similar results were proved in [11], [15], [16] and [20]. In [7], invariant Finsler metrics on
homogeneous spaces with polar isotropy representations were studied.

We would like to point out here that, although the linear isotropy representation in the
non-compact case is just obtained from duality of semisimple real Lie algebras, the isotropy
action is much harder to study than in the compact case. Our technique to show that an
action is non-polar in the compact case is to exhibit a non-polar slice representation.
Nevertheless, we show that in the non-compact case there are isotropy actions that are
infinitesimally polar (that is, all slice representations are polar) but non-polar.

Finally, there is an interesting class of homogeneous spaces whose isometry group is not
semisimple and that has been thoroughly studied: Damek-Ricci spaces and their close rela-
tives, 2-step nilpotent generalized Heisenberg groups. Damek-Ricci spaces gained recogni-
tion because they provide counterexamples to the Lichnerowicz conjecture [5]: Damek-Ricci
spaces are harmonic (the volume density function is a radial function around each point),
but generically non-symmetric. We show in this paper that symmetric Damek-Ricci spaces
are precisely the ones that have polar isotropy and that generalized Heisenberg groups have
non-polar isotropy. Therefore, within the class of Heisenberg groups and Damek-Ricci
spaces, Theorem 1.1 remains valid.
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This paper is organized as follows. In §2 we collect the basic results on the classifica-
tion of homogeneous spaces with compact Lie groups of isometries whose linear isotropy
representation is polar. In §3 we decide which of these homogeneous spaces have polar
isotropy and prove Theorem 1.1. Then, in §4 we consider non-compact semisimple Lie
groups. We prove a duality result for the linear isotropy representation and show that,
unlike the compact case, there are spaces with non-polar, infinitesimally polar isotropy
action. We also study some homogeneous spaces whose isometry group is not semisimple,
namely, generalized Heisenberg groups and Damek-Ricci spaces. We determine in §5 which
of them have polar linear isotropy representation, and show that, among these spaces, the
isotropy action is polar if and only if such a space is symmetric. We conclude the paper
with some open problems in §6.

2. Preliminaries

In [14] the following classification of homogeneous spaces G/H of simple compact Lie
groups G with polar isotropy actions was obtained.

Theorem 2.1. Let G/H be a homogeneous space with G a simple compact connected Lie
group and H a closed connected non-trivial subgroup. If the H-action on G/H is polar with
respect to a G-invariant Riemannian metric µ, then the Riemannian manifold (G/H, µ) is
locally symmetric and the pair (G,H) is, up to local isomorphism, either a symmetric pair
or one of the following: (SU(n+ 1), SU(n)), (Sp(n+ 1), Sp(n)), (Sp(n+ 1), Sp(n)×U(1)),
(Spin(9), Spin(7)), (Spin(7),G2), (G2, SU(3)).

Let G be a Lie group with Lie algebra g and H ⊆ G a compact subgroup. We denote
by AdG |H the restriction of the adjoint representation of G to the subgroup H. By

χ(G,H) = AdG |H 	 AdH

we denote the isotropy representation of the homogeneous space G/H, given by the linear
action of H on the tangent space TeHG/H.

Lemma 2.2. Let ρ : G → GL(V ) be a representation of the compact Lie group G on the
finite-dimensional real vector space V . Let µ, ν : V ×V → R be G-invariant scalar products.
Then the action of G on V is polar with respect to µ if and only if it is polar with respect
to ν.

Proof. Since representations of compact Lie groups are completely reducible, there is a
decomposition V = V0 ⊕ V1 ⊕ · · · ⊕ Vk such that G acts trivially on V0 and irreducibly
on V1, . . . , Vk. Let Σ ⊆ V be a section of the G-action on the Euclidean vector space (V, µ).
Then it follows from [4, Thm. 4] that Σ is of the form Σ = V0⊕Σ1⊕· · ·⊕Σk, where Σi ⊂ Vi
are linear subspaces. By [13, Lemma 2.9] we have that the invariant subspaces V1, . . . , Vk
are mutually inequivalent and it is a consequence of Schur’s Lemma that any G-invariant
scalar product is such that the V0, . . . , Vk are mutually orthogonal and ν|Vi×Vi = λi µ|Vi×Vi
with a positive constant λi for i = 1, . . . , k. It follows that a vector in V is orthogonal to Σ
with respect to µ if and only if it is orthogonal to Σ with respect to ν. �
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In particular, the polarity of the linear representation χ(G,H) does not depend on the
choice of the G-invariant Riemannian metric on G/H. (However, the polarity of the H-
action on G/H may depend on the choice of the G-invariant Riemannian metric on G/H,
cf. [14, Thms. 14, 15].)

For homogeneous spaces G/H with compact simple G the following classification of
spaces with polar linear isotropy was given in [14].

Theorem 2.3. Let G be a simply connected simple compact Lie group and H be a closed
connected subgroup. Assume the linear isotropy representation χ(G,H) is polar. Then
(G,H) is either one of the pairs given in Theorem 2.1 or one of the following:

(i) (SU(p+ q), SU(p)× SU(q)), where 2 ≤ p < q;
(ii) (Spin(2n), SU(n)), where n ≥ 5 is odd;

(iii) (E6, Spin(10)).

Let G be a simple Lie group and let H ⊆ G be a compact connected subgroup such
that (G,K) is a Hermitian symmetric pair, where K = H · U(1). Let ρ = χ(G,K) be
the isotropy representation of G/K and let ρ|H be its restriction to the subgroup H. If
the connected components of the orbits of ρ and ρ|H are the same, then we say that the
U(1)-factor is inessential for the symmetric pair (G,K), otherwise we say it is essential. It
follows from [8] or [14, Thm. 6] that ρ|H is polar if and only if the U(1)-factor is inessential.

Remark 2.4. The pairs (G,H) given in Theorem 2.3, but not in Theorem 2.1, are exactly
those pairs where G is a simply connected simple compact Lie group and H ⊆ G a compact
connected subgroup such that (G,H · U(1)) is a Hermitian symmetric pair of rank ≥ 2
where the U(1)-factor is inessential. (We remark parenthetically that these are also exactly
the pairs (G,H) with G simply connected, simple and compact where (G,H · U(1)) is a
symmetric pair such that the non-compact dual of G/(H ·U(1)) is an irreducible Hermitian
symmetric space of non-tube type and rank ≥ 2.)

A pair of groups (G,H) with H ⊆ G is said to be decomposable if G ∼= G1×G2 as a direct
product of non-trivial factors and H = H1×H2 with Hi ⊆ Gi for i = 1, 2. Otherwise, we say
the pair is indecomposable. For G semisimple and compact, the homogeneous spaces G/H
with polar linear isotropy representation were classified in [14]. Obviously, it suffices to
classify the spaces where the pair (G,H) is indecomposable. The result can be stated as
follows, where we denote the canonical projections by πi : G1 × · · · ×Gm → Gi.

Proposition 2.5. Let G = G1×· · ·×Gm be a simply connected compact Lie group, where
the Gi are simple normal factors, and let H be a compact connected subgroup of G such that
the pair (G,H) is indecomposable. Assume m ≥ 2. Then the linear isotropy representation
χ(G,H) of the homogeneous space G/H is polar if and only if the pair (G,H) is one of
the following (up to automorphisms of G):

(i) (L× L,∆L), where L is a simple compact Lie group and ∆L = {(g, g) | g ∈ L};
(ii) (Sp(a+ 1)× Sp(b+ 1), Sp(a)× Sp(1)× Sp(b)), where a ≥ 1, b ≥ 0;

(iii) (G,H), where each (Gi, πi(H)) is either an irreducible Hermitian symmetric pair
or (Sp(n+ 1), Sp(n) · U(1)), the intersection Gi ∩ H agrees with the semisimple
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part of πi(H) for each i, and the rank of the center of H is greater or equal than
the number of those indices i where the U(1)-factor is essential for (Gi, πi(H)).

We will now state two results which show that homogeneous spaces with polar isotropy
actions are locally symmetric under certain additional assumptions. Note that neither
result requires the transitive action of a semisimple Lie group.

Lemma 2.6. Let M be a homogeneous Riemannian manifold on which a Lie group H of
isometries acts polarly with a fixed point p and with cohomogeneity two. Then M is locally
symmetric.

Proof. We show that there exists a two-dimensional totally geodesic subspace Σ with the
property that any geodesic of M can be mapped into Σ by an isometry.

Let Σ be a section of the polar H-action. Then p ∈ Σ, since a section meets all orbits
and p is a fixed point. Let γ : R → M be a geodesic. Since M is homogeneous, we may
assume that γ(0) = p. Furthermore, we know that the induced action of H on TpM is
polar with TpΣ as a section, cf. [17, Thm. 4.6]. Thus there is an isometry h ∈ H such that
h · γ′(0) ∈ TpΣ. Since Σ, as a section of a polar action, is totally geodesic [18, Thm. 3.2],
this implies that h · γ(R) ⊆ Σ.

Now it follows from [15, Thm. 2.3] that M is locally symmetric. �

In [6], the following result is shown, which is a generalization of [14, Thm. 3].

Theorem 2.7. Let M be a homogeneous Riemannian manifold. Let H be a Lie group of
isometries acting polarly on M . If the H-action on M has a fixed point and a section for
the H-action is a compact locally symmetric space, then M is locally symmetric.

3. Non-symmetric spaces with polar linear isotropy

We will show in this section that the isotropy actions of the spaces in Proposition 2.5 (ii)
and (iii) are non-polar by exhibiting non-polar slice representations. Note that for a ho-
mogeneous space G/H, the slice representation of the H-action on G/H at the point gH
is equivalent to the action given by AdG |H∩gHg−1 on g/(h + AdG(g)(h)).

Proposition 3.1. The isotropy actions of the spaces in Proposition 2.5 (iii) are non-polar.

Example 3.2. In order to illustrate the proof of Proposition 3.1 we consider the following
example:

M =
S2n+1 × S2m+1

S1
∼=

SU(n+ 1)× SU(m+ 1)

SU(n)× SU(m)× U(1)
,

where the action of S1 = U(1) is diagonal.
Then, M can be written as M = G/H, where G = G1 × G2, G1 = SU(n+ 1), G2 =

SU(m+ 1), and

H =

{((
A

z

)
,

(
B

z

))
∈ G

∣∣∣∣A ∈ U(n), B ∈ U(m), z ∈ U(1)

}
.
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As usual we denote by πi : G→ Gi the projection. Then, we have K1 = π1(H) ∼= S(U(n)×
U(1)) and K2 = π2(H) ∼= S(U(m)× U(1)). If we put Hi = H ∩ Gi, then H1

∼= SU(n) and
H2
∼= SU(m). In particular, K1

∼= H1 · U(1) and K2
∼= H2 · U(1), and the U(1)-factor is

inessential in this case.
We take g1 ∈ G1 such that

g1K1g
−1
1 =

{(
z

A

)
∈ SU(n+ 1)

∣∣∣∣A ∈ U(n), z ∈ U(1)

}
.

The idea is to consider the slice representation of G1/K1 at g1K1. First,

g1K1g
−1
1 ∩K1 =


 z

A
w

 ∈ SU(n+ 1)

∣∣∣∣∣∣ A ∈ U(n− 1),

z, w ∈ U(1)

 ,

and the normal space at the point g1K1 of G1/K1 can be identified with

V1 := νg1K1(K1 · g1K1) ∼=
g1

k1 + Ad(g1)k1
∼=


 u

−ū

 ∈ su(n+ 1)

∣∣∣∣∣∣u ∈ C

 .

The slice representation of G1/K1 at g1K1 is then equivalent to the adjoint action of
g1K1g

−1
1 ∩ K1 on V1 ∼= C. This representation is equivalent to (z, A, w) · u = zuw̄, with

z, w ∈ U(1), A ∈ U(n− 1) satisfying zw detA = 1, and u ∈ C. Hence, the effectivized
slice representation is equivalent to the standard representation of U(1) on C. A similar
argument can be made for G2.

Now let g = (g1, g2) ∈ G, and consider the slice representation of M = G/H at gH. It
turns out that

Q := gHg−1 ∩H =


 z

A
w

 ,

 z
B

w

 ∈ G
∣∣∣∣∣∣
A ∈ U(n− 1),
B ∈ U(m− 1),
z, w ∈ U(1)

 ,

and the normal space at the point gH of G/H can be identified with V := V1⊕V2, that is,

V = νgH(H · gH) ∼=
g

h + Ad(g)h
∼=


 u

−ū

 ,

 v

−v̄

 ∈ g

∣∣∣∣∣∣u, v ∈ C

 .

Then, the slice representation of H at gH is equivalent to the adjoint action of Q on
V ∼= C2, and this is equivalent to the action (A,B, z, w) · (u, v) = (zuw̄, zvw̄). Therefore,
the slice representation of G/H at gH is orbit equivalent to the diagonal action of U(1)
on C2, which is non-polar. Indeed, note that πi(Q) acts polarly on each factor Vi via
the standard action of U(1) on C. Nevertheless, the action of Q on V is diagonal, not
orbit equivalent to the product action π1(Q) × π2(Q) on V = V1 ⊕ V2, and hence, by [1,
Prop. 1 (ii)], cannot be polar.

Now we turn our attention to the general case.
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Proof of Proposition 3.1. We will show that there is an element g = (g1, . . . , gm) ∈ G such
that the isotropy action of H on G/H has a non-polar slice representation at gH. This is
equivalent to the slice representation of the gHg−1-action at eH ∈ G/H being non-polar.

We will determine the components gi ∈ Gi of the desired element g ∈ G for each factor
individually. Let Hi = H ∩ Gi and let Ki = Hi · U(1). Then, for each i, either (Gi, Ki) is
an irreducible Hermitian symmetric pair or (Gi, Ki) = (Sp(n+ 1), Sp(n) · U(1)). We deal
with several different cases according to the conditions described in Remark 2.4.

(i) First assume (Gi, Ki) is a Hermitian symmetric pair such that the U(1)-factor is
essential for the representation χ(Gi, Ki). For these indices i we choose gi = e, the
identity element of Gi.

(ii) Now assume (Gi, Hi) is one of the pairs in Theorem 2.3, i.e. (Gi, Ki) is a Her-
mitian symmetric pair of rank ≥ 2 such that the U(1)-factor is inessential for the
representation χ(Gi, πi(K)), i.e. one of
(a) (SU(p+ q), SU(p)× SU(q)), 2 ≤ p < q;
(b) (Spin(2n), SU(n)), n ≥ 5 odd;
(c) (E6, Spin(10)).

Choose the element gi as in [14, Thm. 13]. Then the slice representation of the
gKig

−1-action on Gi/Ki at eKi is given by the following representations:
(a) the linear action of S(U(p)× U(p)) on Cp⊗Cp, i.e. the isotropy representation

of SU(2p)/S(U(p)× U(p));
(b) the linear action of U(n− 1) on Λ2Cn−1, i.e. the isotropy representation of

SO(2m)/U(m), m = n− 1 even;
(c) the linear action of Spin(8) · U(1) on R8 ⊗ R2, i.e. a linear action which is

equivalent to the isotropy representation of SO(10)/SO(8)×SO(2) after effec-
tivization.

Note that the above representations are equivalent to isotropy representations of
Hermitian symmetric pairs where the U(1)-factor is essential, see the remarks after
Theorem 2.3. The slice representation of the giHig

−1
i -action on Gi/Hi at eHi then

contains as a submodule:
(a) the linear action of SU(p)× SU(p) on Cp ⊗ Cp,
(b) the linear action of SU(n− 1) on Λ2Cn−1,
(c) the linear action of Spin(8) on R8 ⊕ R8,

see [14, Thm. 13].
(iii) If (Gi, Ki) is a Hermitian symmetric pair of rank one, which is only the case if we

have

(Gi, Ki) = (SU(n+ 1), S(U(n)× U(1))),

we assume that

Ki =

{(
A

z

)
∈ SU(n+ 1)

∣∣∣∣A ∈ U(n), z ∈ U(1)

}
.
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In this case let gi ∈ SU(n+ 1) be such that

giKig
−1
i =

{(
z

A

)
∈ SU(n+ 1)

∣∣∣∣A ∈ U(n), z ∈ U(1)

}
.

With a similar computation as in Example 3.2 we find that

giKig
−1
i ∩Ki =


 z

A
w

 ∈ SU(n+ 1)

∣∣∣∣∣∣ A ∈ U(n− 1),
z, w ∈ U(1)

 ,

whose slice representation is given by its action on the matrices
 u

−ū

 ∈ su(n+ 1)

∣∣∣∣∣∣u ∈ C

 .

The effectivized slice representation is thus equivalent to the standard representa-
tion of U(1) on C, and hence its restriction to giHig

−1
i ∩Hi is trivial.

(iv) The case where

(Gi, Ki) = (Sp(n+ 1), Sp(n) · U(1)),

will be treated similarly. In this case, let

Ki =

{(
A

z

)
∈ Sp(n+ 1)

∣∣∣∣A ∈ Sp(n), z ∈ U(1)

}
,

assuming that the elements of Sp(n+ 1) are given by quaternionic (n+1)×(n+1)-
matrices, and choose gi ∈ Sp(n+ 1) such that

giKig
−1
i =

{(
z

A

)
∈ Sp(n+ 1)

∣∣∣∣A ∈ Sp(n), z ∈ U(1)

}
.

We obtain

giKig
−1
i ∩Ki =


 z

A
w

 ∈ Sp(n+ 1)

∣∣∣∣∣∣ A ∈ Sp(n− 1),
z, w ∈ U(1)

 ,

whose slice representation is given by its action on the matrices
 q

−q̄

 ∈ sp(n+ 1)

∣∣∣∣∣∣ q ∈ H

 .

The effectivized slice representation is equivalent to the componentwise action
of U(1)×U(1) on C⊕C by the standard representations, and hence its effectivized
restriction to giHig

−1
i ∩ Hi is given by the restriction to the diagonal subgroup

of U(1)× U(1).
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Let now Vi be the slice representation of the giKig
−1
i -action on Gi/Ki at eKi, and

consider the representation V = V1 ⊕ · · · ⊕ Vm. Its restriction to Q := gHg−1 ∩H appears
as a submodule of the slice representation of the gHg−1-action on G/H at eH. Note that
each Vi is by itself a polar representation of Q. Assume that the restriction of V to Q is
polar. Then, by [1, Prop. 1 (iii)], the action of Q on V 	 Vm = V1 ⊕ · · · ⊕ Vm−1 is orbit
equivalent to the action of Qvm on V 	 Vm, where Qvm is the isotropy subgroup of the
Q-action on Vm at a regular element vm ∈ Vm. Since by construction the action of the
center of Q on each Vi has the vector 0 as the only fixed point, and the center of each
πi(H) = Ki is one-dimensional, we get that the rank of the center of Qvm is max{0, r− 1},
where r stands for the rank of the center of Q. By an inductive argument, we deduce that
the action of Q on V1 is orbit equivalent to the action of the isotropy group Q(v2,...,vm),
where vi ∈ Vi is regular, and the rank of the center of Q(v2,...,vm) is max{0, r −m+ 1}. By
construction of the representation V , if the rank of the center of Q(v2,...,vm) is zero, then
its action on V1 (which has the same orbits as the action of g1H1g

−1
1 ∩ H1) is not orbit

equivalent to the Q-action on V1 (which has the same orbits as the action of g1K1g
−1
1 ∩K1).

Hence we must have r = m. But, since our construction also has the property that the
centers of H and Q have the same rank, we get that the rank of the center of H is m.
However, since the pair (G,H) is indecomposable, the rank of the center of H must be less
than m. This proves by contradiction that the H-action on G/H is non-polar. �

Proposition 3.3. The isotropy action of the following homogeneous space, where the
Sp(1)-factor is diagonally embedded,

G/H =
Sp(a+ 1)× Sp(b+ 1)

Sp(a)× Sp(b)× Sp(1)
, a, b ≥ 1,

is non-polar.

Proof. We will show that there is an element g ∈ G such that the isotropy action of H
on G/H has a non-polar slice representation at gH. This is equivalent to the slice repre-
sentation of the gHg−1-action at eH ∈ G/H being non-polar. Let

H =

{((
A

q

)
,

(
B

q

))∣∣∣∣A ∈ Sp(a), B ∈ Sp(b), q ∈ Sp(1)

}
.

There is an element g ∈ G such that

gHg−1 =

{((
q

A

)
,

(
q

B

))∣∣∣∣A ∈ Sp(a), B ∈ Sp(b), q ∈ Sp(1)

}
.

The slice representation at the point eH of the gHg−1-action on G/H is given by the
representation of the group

H ∩ gHg−1 =


 p

A
q

 ,

 p
B

q

∣∣∣∣∣∣
A ∈ Sp(a− 1),
B ∈ Sp(b− 1),
p, q ∈ Sp(1)


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on the 8-dimensional normal space to the gHg−1-orbit through eH, which is given by
 x

−x̄

 ,

 y

−ȳ

 ∈ sp(a+ 1)× sp(b+ 1)

∣∣∣∣∣∣x, y ∈ H

 .

It is easy to verify that this representation, after its effectivity kernel is factored out, is
equivalent to the action of SO(4) on R4 ⊕ R4, i.e. the direct sum of two copies of the
standard representation. It is well known that this representation is non-polar, see [13,
Lemma 2.9]. Since all slice representations of polar actions are polar [18, Thm. 4.6], this
shows that the isotropy action of H on G/H is non-polar. �

Proof of Theorem 1.1. Assume first that G is simple. It follows from Theorem 2.1 that
G/H is locally symmetric. Since G is simply connected and H is connected, we have that
the Riemannian manifold (G/H, µ) is simply connected, complete and locally symmetric.
Hence (G/H, µ) is a Riemannian globally symmetric space.

If G is non-simple, then we may assume that (G,H) is one of the pairs as described in
parts (i), (ii), or (iii) of Proposition 2.5. We treat these three cases separately:

(i) The spaces as given by part (i) of the proposition are symmetric. Indeed, they
are homogeneous presentations L × L/∆L of simple compact Lie groups L with
biinvariant Riemannian metric. Since these spaces are isotropy irreducible, their
G-invariant Riemannian metrics are uniquely determined up to scaling.

(ii) The spaces as in part (ii) have been shown to have non-polar isotropy in Proposi-
tion 3.3 if b ≥ 1. The space

G/H =
Sp(a+ 1)× Sp(1)

Sp(a)× Sp(1)

is diffeomorphic to S4a+3. Recall that the subgroup Sp(a+ 1) of G also acts transi-
tively on S4a+3. Moreover, the space of all Sp(a+ 1)×Sp(1)-invariant Riemannian
metrics on G/H is a subset of the space of Sp(a+ 1)-invariant Riemannian metrics.
Therefore, this case is already covered by Theorem 2.1.

(iii) Finally, the pairs as described in part (iii) of Proposition 2.5 have been shown in
Proposition 3.1 to have non-polar slice representations.

This completes the proof of our main result. �

We obtain the following observation. Recall that an isometric action is called infinitesi-
mally polar if all of its slice representations are polar.

Corollary 3.4. Let G be a simply connected compact semisimple Lie group and let H be a
closed connected subgroup. If the isotropy action of H on G/H is infinitesimally polar with
respect to some G-invariant metric, then there exists a symmetric G-invariant Riemannian
metric on G/H.

Proof. Assume G is a simply connected compact semisimple Lie group and H ⊂ G a closed
connected subgroup such that the isotropy action is infinitesimally polar. In particular,
the linear isotropy representation χ(G,H) is polar, as it is the slice representation of H at
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eH. All such pairs (G,H) are symmetric pairs or are given by Theorems 2.1 and 2.3 in
case G is simple and by Proposition 2.5 in case G is non-simple. We show that for each
such pair a symmetric metric exists or the isotropy action of H on G/H has a non-polar
slice representation.

If (G,H) is a symmetric pair, then with any G-invariant Riemannian metric, G/H is
symmetric and the result is obvious in this case.

Consider now the non-symmetric pairs given in Theorem 2.1. For (SU(n+ 1), SU(n)),
(Sp(n+ 1), Sp(n) × U(1)), (Spin(9), Spin(7)), the cohomogeneity of the H-action on G/H
is two, for (Spin(7),G2), (G2, SU(3)) it is one. Since orthogonal representations of coho-
mogeneity one and two are polar, the H-actions on G/H are infinitesimally polar in these
cases. For the action of Sp(n) on Sp(n+ 1)/Sp(n), one can directly check that the slice
representations at the two singular points are polar. It is well known that for these six
pairs (G,H) the space G/H carries a symmetric metric.

For the remaining pairs (G,H) it is shown in Propositions 3.1, 3.3 above and the proof
of [14, Th. 13] that the H-action on G/H has a non-polar slice representation, so there is
nothing to check in this case. �

Remark 3.5. The space S7×S7 obviously admits a symmetric metric. Nevertheless, take the
transitive Spin(8)-action on S7×S7 given by any two inequivalent non-trivial representations
of Spin(8) on R8. It has the isotropy group G2, whose isotropy representation contains two
equivalent G2-modules and is thus not polar by [13, Lemma 2.9]. Therefore, the converse
of Corollary 3.4 does not hold.

One can see from Theorem 4.5 in the next section that the corollary above does not hold
anymore if the assumption that G is compact is dropped.

4. Some remarks on the non-compact semisimple case

We first observe that for semisimple G the question of polar linear isotropy can be
reduced to the compact case via duality of symmetric spaces.

Proposition 4.1. Let G be a simply connected semisimple Lie group and let H be a
compact connected subgroup such that the pair (G,H) is indecomposable. Assume the
isotropy representation χ(G,H) of G/H is polar. Then there is a Cartan decomposition g =
k+p such that h ⊆ k. Moreover, χ(G∗, H) is polar and the pair (G∗, H) is indecomposable,
where g∗ = k + ip and G∗ is the simply connected Lie group with Lie algebra g∗.

Proof. Since H is a compact subgroup of G, there is a maximal compact subgroup K
of G containing H. This maximal compact subgroup gives rise to a Cartan decomposition
g = k + p. Define an involution θ : g→ g by requiring θ|k = idk and θ|p = − idp. Then the
Lie algebra g∗ = k+

√
−1 p is compact and semisimple. Let G∗ be the simply connected Lie

group with Lie algebra g∗. We have χ(G∗, H) ∼= χ(G∗, K)|H ⊕ χ(K,H) and χ(G∗, K) ∼=
χ(G,K), and from this it follows that the isotropy representation χ(G∗, H) is polar, since
it is equivalent to the isotropy representation χ(G,H) ∼= χ(G,K)|H ⊕ χ(K,H).

It remains to show that the pair (G∗, H) is indecomposable. If θ maps each simple ideal
of g onto itself, then the simple ideals of g∗ are in one-to-one correspondence to the simple
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ideals of g and (G∗, H) is indecomposable. Now assume there are at least two different
simple ideals gλ and gν such that θ(gλ) = gν . Since θ is an automorphism of order two, it
follows that we also have θ(gν) = gλ. Now it follows from the classification of symmetric
spaces [12] that g∗ is the direct sum of two isomorphic simple compact Lie algebras and k
is the diagonal subalgebra. It follows from Proposition 2.5 that in this case h = k and thus
(G∗, H) is indecomposable. �

It is a consequence of the above proposition that the classification of homogeneous spaces
of simple non-compact Lie groups with polar linear isotropy representation follows almost
immediately from the results of [14]:

Corollary 4.2. Let G be a simply connected non-compact simple Lie group, and let H be
a compact subgroup. Then the linear isotropy representation χ(G,H) of the homogeneous
space G/H is polar if and only if the pair (G,H) is either a symmetric pair or one of the fol-
lowing: (SU(n, 1), SU(n)); (Sp(n, 1), Sp(n)); (Sp(n, 1), Sp(n) × U(1)); (Spin(8, 1), Spin(7));
(SU(p, q), SU(p) × SU(q)), where 2 ≤ p < q; (SO∗(2n), SU(n)), where n ≥ 5 is odd;
(E6(−14), Spin(10)).

Proof. To prove the corollary, it suffices to consider the pairs in Theorem 2.1 and 2.3 and
to determine, up to automorphisms of G, all symmetric pairs (G,K) with K connected,
such that H ⊂ K after conjugation and χ(G∗, H) ∼= χ(G,H).

Note that the space G2/SU(3) does not have a non-compact Riemannian counterpart,
since the non-compact real form of G2 contains the maximal compact subgroup SO(4) and
hence does not contain a compact subgroup locally isomorphic to SU(3); an analogous
remark applies to the space Spin(7)/G2.

In case (G∗, H) = (Spin(9), Spin(7)), first assume H = Spin(7) is contained in the sub-
group K = Spin(7) · SO(2) of Spin(9), then it follows that

χ(G,K)|H ⊕ χ(K,H) ∼= χ(Spin(9), Spin(7) · SO(2))|Spin(7) ⊕ R,

is the direct sum of two equivalent 7-dimensional modules and a one-dimensional trivial
module; in particular, χ(G,H) is non-polar by [13, Lemma 2.9]; thus G ∼= Spin(8, 1) is the
only remaining possibility by a dimension count.

In all other cases, there is exactly one possibility for such a group K, as can be seen
from a decomposition of χ(G∗, H) into invariant subspaces. �

For the case of semisimple, non-simple Lie groups G the classification follows from Propo-
sition 2.5 by the same method. We obtain:

Corollary 4.3. Let G = G1 × · · · × Gm be a simply connected Lie group, where the Gi

are simple normal factors, and let H be a compact connected subgroup of G such that the
pair (G,H) is indecomposable. Assume m ≥ 2. Then the linear isotropy representation
χ(G,H) of the homogeneous space G/H is polar if and only if the pair (G,H) is either a
symmetric pair or one of the following (up to automorphisms of G):

(i) (G,H) = (Sp(a+ 1)× Sp(b+ 1), Sp(a)× Sp(1)× Sp(b)), a ≥ 1, b ≥ 0;
(ii) (G,H) = (Sp(a, 1)× Sp(b+ 1), Sp(a)× Sp(1)× Sp(b)), a ≥ 1, b ≥ 0;
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(iii) (G,H) = (Sp(a, 1)× Sp(b, 1), Sp(a)× Sp(1)× Sp(b)), a ≥ 1, b ≥ 1;
(iv) (G,H), where each (Gi, πi(H)) is either an irreducible Hermitian symmetric pair

or one of (Sp(n+ 1), Sp(n) ·U(1)), (Sp(n, 1), Sp(n) ·U(1)), the intersection Gi ∩H
agrees with the semisimple part of πi(H) for each i, and the rank of the center
of H is greater or equal than the number of those indices i where the U(1)-factor
is essential for (Gi, πi(H)).

In the remainder of this section, we show that for the non-compact analogs of the non-
symmetric examples in Theorem 2.1 whose isotropy is of cohomogeneity two, the isotropy
action is non-polar, regardless of which G-invariant Riemannian metric is chosen. We will
use the following lemma.

Lemma 4.4. Let the connected simple Lie group G act isometrically on the simply con-
nected Riemannian symmetric space M . Let M = M0 ×M1 × · · · ×Mt be the De Rham
decomposition of M , where M0 is its Euclidean factor and M1, . . . ,Mt are irreducible. As-
sume that there is an index i ∈ {0, . . . , t} such that dim(G) > dim(I(Mi)), where I(Mi) is
the isometry group of Mi. Then the G-action on M acts trivially on the factor Mi, i.e.

g · (x0, . . . , xt) = (y0, . . . , yt)⇒ xi = yi.

Proof. Let I0(M) and I0(Mi) denote the connected components of the isometry groups
of M and Mi. By [22, Thm. 8.3.9] we have I0(M) = I0(M0) × I0(M1) × · · · × I0(Mt).
It follows that every element of I0(M) is of the form (x0, . . . , xt) 7→ (g0 · x0, . . . , gt · xt),
where gk ∈ I0(Mk), in particular, the G-action on M induces a Lie algebra homomorphism
ϕ : g → i(Mi) from the Lie algebra of G into the Lie algebra i(Mi) of I(Mi). Since
dim(g) > dim(i(Mi)), the kernel of ϕ is non-trivial and it now follows that ϕ = 0 as g is
simple. Since G is connected, this proves the statement of the lemma. �

Theorem 4.5. Let (G,H) be one of (SU(n, 1), SU(n)), n ≥ 2; (Sp(n, 1), Sp(n) × U(1)),
n ≥ 1; (Spin(8, 1), Spin(7)) and let G/H be endowed with a G-invariant Riemannian metric.
Then this Riemannian metric is not (locally) symmetric, and the isotropy action of H
on G/H is infinitesimally polar but non-polar.

Proof. First, note that the cohomogeneity of the isotropy action is two in all cases, and
thus, the action of H on G/H is infinitesimally polar. Assume that the isotropy action
of H on M = G/H is polar, where the pair (G,H) is one of the pairs in the assertion of the
theorem and where G/H is endowed with some G-invariant Riemannian metric µ. Since
the cohomogeneity of the isotropy action is two, Lemma 2.6 shows that (M,µ) is locally
symmetric. Since in all cases G is simply connected and H is connected, it follows that
M is simply connected and hence a Riemannian globally symmetric space by [12, Ch. IV,
Cor. 5.7]. Therefore, in order to prove Theorem 4.5 it suffices to assume that (M,µ) is
symmetric and reach a contradiction. Note that M is not flat, since a semisimple Lie group
cannot act transitively on a Euclidean space by isometries.

(i) M = SU(n, 1)/SU(n). The isotropy representation of this space is equivalent to
the SU(n)-action on Cn ⊕ R, where SU(n) acts by its standard representation
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on the first summand and trivially on the second. Since this action is not an s-
representation, i.e. it is not equivalent to the action of an isotropy group I(S)p of
a Riemannian symmetric space S on the tangent space TpS, cf. [12, Ch. X, §6], the
actual action of I(M)p on TpM will contain the above action as a proper subaction.

First assume the action of I(M)p on TpM is irreducible. Since the princi-
pal orbits of SU(n) on TpM are (2n − 1)-dimensional, and I(M)p leaves the
2n-dimensional distance spheres around the origin in TpM invariant, it follows
that I(M)p acts transitively on the unit sphere in TpM , hence M is an odd-
dimensional simply connected non-compact Riemannian symmetric space of rank
one, therefore homothetic to RH2n+1. Then G/H is a homogeneous presenta-
tion of RH2n+1. However, by the results of [10, Thm. 6] or [3, Thm. 3.1], any
semisimple Lie group acting transitively and effectively on RH2n+1 is isomorphic
to SO(2n+ 1, 1), leading to a contradiction for all n ≥ 2.

If one assumes that the action of I(M)p on TpM is reducible, then it follows that
M is isometric to a symmetric space N×R on which G acts transitively. This leads
to a contradiction by Lemma 4.4 since G is simple and dim(G) > dim(I(R)) = 1.

(ii) M = Sp(n, 1)/Sp(n)×U(1). In this case, the isotropy representation of G/H splits
as C2n ⊕ C, where both modules are irreducible.

Assume M is reducible; then M = M1 ×M2, where M2 is a symmetric space of
dimension 2 (reducible or irreducible). Thus the isometry group I(M2) is at most
of dimension 3. This leads to a contradiction by Lemma 4.4 since G is simple and
dim(G) ≥ 10.

Hence M is an irreducible symmetric space whose isotropy representation has
the Sp(n) × U(1)-representation on C2n ⊕ C as a proper subaction. Since this
representation has S4n−1× S1 as principal orbits, the isotropy representation of
I(M)p must act transitively on the unit sphere in TpM . Since dim(M) = 4n + 2,
we have that M is an RH4n+2 or a CH2n+1. In case M = RH4n+2 we get a
contradiction with [10, Thm. 6] or [3, Thm. 3.1] as in case (i). In caseM = CH2n+1,
we get a contradiction with [3, Thm. 4.1], since by [3] any connected semisimple Lie
group acting transitively and effectively on CH2n+1 is isomorphic to SU(2n+ 1, 1).

(iii) M = Spin(8, 1)/Spin(7). The isotropy representation χ(G,H) is the direct sum
R7 ⊕ R8, where H = Spin(7) acts on R7 by its standard representation and on R8

by its spin representation. If the symmetric space M is irreducible, then it follows
as in case (i) that M is homothetic to RH15. Using the result of [10, Thm. 6] or
[3, Thm. 3.1] again, we arrive at a contradiction.

If M is reducible, then it follows that M = X × Y is the Riemannian product
of a 7-dimensional symmetric space X and an 8-dimensional symmetric space Y .
Since we know that M is not flat, we know that M = X × Y is a decomposition
of M where either both factors are irreducible, or one factor is Euclidean and the
other is irreducible. If X is flat, then I0(X) ∼= R7oSO(7). If X is non-flat then X
is either an RH7 or an S7, since the isotropy representation acts transitively on the
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unit sphere in the tangent space. In all three cases, we get a contradiction with
Lemma 4.4, since dim(I(X)) = 28, dim(Spin(8, 1)) = 36 and Spin(8, 1) is simple.

We have shown in all cases that any G-invariant Riemannian metric is non-symmetric and
the isotropy action is non-polar. �

5. The non-semisimple case

In this section we prove that two important families of homogeneous spaces with non-
semisimple isometry groups, namely the generalized Heisenberg groups and the non-sym-
metric Damek-Ricci spaces, do not have polar isotropy actions. We briefly recall the
construction of these spaces and refer to [2] for more details.

Let n = v⊕ z be a Lie algebra, equipped with an inner product 〈·, ·〉 such that 〈v, z〉 = 0,
and whose Lie bracket satisfies [v, v] ⊆ z, [v, z] = [z, z] = 0. Let m = dim z. Define a linear
map J : z→ End(v) by

〈JZU, V 〉 = 〈[U, V ], Z〉, for all U , V ∈ v, Z ∈ z.

The Lie algebra n is called a generalized Heisenberg algebra if

J2
Z = −〈Z,Z〉 idv, for all Z ∈ z.

The simply connected Lie group N with Lie algebra n, when equipped with the left-
invariant metric induced by 〈·, ·〉, is called a generalized Heisenberg group.

The map J induces a representation of the Clifford algebra Cl(z, q) on v, where q =
−〈·, ·〉|z×z. Conversely, a representation of such a Clifford algebra induces a map J as
above, and hence, a generalized Heisenberg group. Thus, the classification of these spaces
follows from the classification of Clifford modules. If m 6≡ 3 mod 4, then there is ex-
actly one irreducible Clifford module d over Cl(z, q), up to equivalence, and each Clifford
module over Cl(z, q) is isomorphic to v ∼= ⊕ki=1d; we denote the corresponding generalized
Heisenberg group by N(m, k). If m ≡ 3 mod 4, then there are precisely two irreducible
Clifford modules, d+ and d−, over Cl(z, q), up to equivalence, and each Clifford module

over Cl(z, q) is isomorphic to v ∼=
(
⊕k+i=1d+

)
⊕
(
⊕k−i=1d−); we denote the corresponding group

by N(m, k+, k−). As vector spaces, the irreducible modules d (or d±) are isomorphic to the
vector spaces shown in Table 1. Moreover, if m ≡ 3 mod 4, then N(m, k+, k−) is isometric
to N(m, k′+, k

′
−) if and only if (k′+, k

′
−) equals (k+, k−) or (k−, k+).

m 8p 8p+ 1 8p+ 2 8p+ 3 8p+ 4 8p+ 5 8p+ 6 8p+ 7

d(±) R24p C24p H24p H24p H24p+1 C24p+2 R24p+3 R24p+3

Table 1. Irreducible Clifford modules

Let a be a one-dimensional real vector space with an inner product, let B ∈ a be a
unit vector, and n a generalized Heisenberg algebra. We define the orthogonal direct sum
s = a ⊕ n = a ⊕ v ⊕ z, which we endow with the Lie algebra structure determined by
[B,U ] = 1

2
U and [B,Z] = Z, for all U ∈ v and Z ∈ z. The simply connected Lie group
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S with Lie algebra s, endowed with the left-invariant Riemannian metric given by the
inner product on s, is called a Damek-Ricci space, which will be denoted by S(m, k) or
S(m, k+, k−) depending on the underlying generalized Heisenberg group with Lie algebra n.

Damek-Ricci spaces are homogeneous and non-symmetric except for the following cases:
S(1, k), which is isometric to the complex hyperbolic space CHk+1, S(3, k, 0) ∼= S(3, 0, k),
which is isometric to the quaternionic hyperbolic space HHk+1, and S(7, 1, 0) ∼= S(7, 0, 1),
which is isometric to the Cayley hyperbolic plane OH2.

Before studying generalized Heisenberg groups and Damek-Ricci spaces with polar isotropy
we first consider those that have polar linear isotropy representation.

Theorem 5.1. We have:

(i) The space M is a generalized Heisenberg group with polar linear isotropy represen-
tation if and only if M is one of

N(1, k), N(2, k), N(3, k+, k−), N(6, 1), N(7, 1, 0) ∼= N(7, 0, 1).

(ii) The space M is a non-symmetric Damek-Ricci space with polar linear isotropy
representation if and only if M is one of

S(2, k), S(3, k+, k−) with k+, k− ≥ 1, S(6, 1).

Proof. Let M denote either a generalized Heisenberg group or a non-symmetric Damek-
Ricci space. In both cases, the isotropy group at the identity e is given by the group of
automorphisms of M whose differential at e is an orthonormal map [2, §3.1.13 and §4.1.12].
Then, as follows from [19] (see also [15]), H, the connected component of the identity of
the isotropy group of M , is given by Spin(m) ·K, where

K =



SO(k), if m ≡ 0, 6 mod 8,

U(k), if m ≡ 1, 5 mod 8,

Sp(k), if m ≡ 2, 4 mod 8,

Sp(k+)× Sp(k−), if m ≡ 3 mod 8,

SO(k+)× SO(k−), if m ≡ 7 mod 8.

If m 6≡ 3 mod 4, H acts on v = d ⊗K Kk via the irreducible representation d of Spin(m)
and the standard representation of K on Kk, where K = R,C,H depending on whether
m ≡ 0, 6, m ≡ 1, 5, or m ≡ 2, 4 mod 8, respectively. If m ≡ 3 mod 4 then H acts on
v = (d+ ⊗K Kk+)⊕ (d− ⊗K Kk−) via the irreducible representations d± of Spin(m) and the
standard representations of Sp(k±) or SO(k±), depending on whether m ≡ 3 or m ≡ 7
mod 8, respectively.

If M is a generalized Heisenberg group, the isotropy representation is the action of
H = Spin(m) ·K on v⊕ z given by the direct sum of the action of H on v described above
and the standard representation Spin(m) → SO(m) on z = Rm, whereas if M is a non-
symmetric Damek-Ricci space, the isotropy representation is the action of H = Spin(m) ·K
on a⊕v⊕z given by the direct sum of the trivial action on a, the action of H on v described
above, and the standard representation on z = Rm.
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Case (i): Generalized Heisenberg groups.

Let us assume that M = N(m, k) or M = N(m, k+, k−) is a generalized Heisenberg
group with Lie algebra n = v⊕ z, whose linear isotropy representation is polar. Then, the
linear isotropy representation is a reducible polar representation and, hence, must appear
in Bergmann’s paper [1]; for convenience, we will refer instead to [9, Appendix 9] and follow
the terminology there.

Assume that the H-action on v is irreducible, so that the H-action on n has exactly
two irreducible submodules. The identity component of the kernel of the H-action on v
is Hz = {e}, whereas for z it is Hv = K. Then, the actions of H and Hz on z are not
orbit equivalent whenever m ≥ 2, while the actions of H and Hv on v are orbit equivalent
if and only if d = K, which happens precisely when m ∈ {1, 2, 3}. Thus, following the
terminology of [9], the H-action on n is standard if and only if m = 1, special if and
only if m ∈ {2, 3}, and exceptional (called interesting in [1]) otherwise; note that the
definition of exceptional representation in [9] does not have anything to do with the usual
notions of exceptional orbits or exceptional Lie groups. For m ∈ {1, 2, 3} it is clear from
the description of the H-action on n above that M has a polar isotropy representation.
Since for m ≥ 4 the H-action on n is exceptional, we just have to analyze if each one of
the examples of exceptional reducible polar representations (listed in [1, Table 1] or [9,
Table 9.2]) appears as the isotropy representation of some generalized Heisenberg group
M with m ≥ 4. By dimension reasons, the reducible action of SU(4) on R6 ⊕ R8, where
SU(4) ∼= Spin(6) acts on R6 via the standard representation Spin(6) → SO(6), appears
only as the isotropy representation of N(6, 1). The Spin(7)-action on R7 ⊕ R8 appears
only as the isotropy representation of N(7, 1, 0) or N(7, 0, 1), which are isometric. By
dimension reasons, and taking into account the explicit description of H, one checks that
the remaining exceptional actions do not appear as isotropy representations of generalized
Heisenberg groups.

Now assume that the H-action on v is reducible. Then, by [9, Lemma 9.5], we have that
Spin(m) is either trivial, SO(2) or Sp(3), that is, m ∈ {1, 2, 3}. But, as we stated above,
in these cases M always has polar isotropy representation.

Case (ii): Damek-Ricci spaces.

Now assume that M = S(m, k) or M = S(m, k+, k−) is a non-symmetric Damek-Ricci
space. The condition of being non-symmetric means that

M /∈ {S(1, k), S(3, k, 0) ∼= S(3, 0, k), S(7, 1, 0) ∼= S(7, 0, 1)}.
Since the isotropy representation of M = S(m, k) (resp. M = S(m, k+, k−)) is the same as
the one of the corresponding Heisenberg group N(m, k) (resp. N(m, k+, k−)), plus a one-
dimensional trivial submodule, it follows that the isotropy representation of M is polar
if and only if the isotropy representation of the corresponding Heisenberg group is polar,
from which the result follows. �

Finally, we have

Theorem 5.2. The generalized Heisenberg groups and the non-symmetric Damek-Ricci
spaces have non-polar isotropy actions.
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Proof. Again, we consider these two cases separately.

Case (i): Generalized Heisenberg groups.

Let M be a generalized Heisenberg group and assume, by way of contradiction, that
the isotropy H-action on M is polar with section Σ. Then TeΣ is a section for the
isotropy representation of M at e. Hence, M is one of the Heisenberg groups given in
Theorem 5.1 (i), and the isotropy representations of these spaces have cohomogeneity
two, except for N(3, k+, k−) with k+, k− ≥ 1, which have cohomogeneity three. Hence,
TeΣ = span{U,Z} in the first family of spaces, or TeΣ = span{U, V, Z} in the second fam-
ily, where U , V ∈ v and Z ∈ z are mutually orthogonal unit vectors, and V is perpendicular
to JzU . (This follows from the fact that the two irreducible submodules of the H-action
on v are also submodules of the Cl(z, q) = Cl3 representation on v, and hence, invariant
under JZ for all Z ∈ z.)

Then, L = Exp(RU ⊕ RJZU ⊕ RZ), where Exp denotes the Lie exponential map, is a
totally geodesic submanifold of M [2, §3.1.9] isometric to the Heisenberg group N(1, 1).
Observe that TeΣ∩TeL = RU⊕RZ. Since the intersection of totally geodesic submanifolds
is totally geodesic, we have that Σ∩L is totally geodesic in M , and hence also in L. Since
Σ ∩ L = expe(RU ⊕ RZ), where now exp denotes the Riemannian exponential map, we
have that Σ ∩ L has dimension 2. But the Heisenberg group L ∼= N(1, 1) does not admit
totally geodesic surfaces [21], which yields a contradiction.

Case (ii): Damek-Ricci spaces.

Now let M be a Damek-Ricci space. Arguing similarly as for the Heisenberg groups,
we will prove that the isotropy action of the spaces given in Theorem 5.1 (ii) is non-polar.
Assume, by contradiction, that the isotropy H-action on M is polar with section Σ. Then
TeΣ is a section for the isotropy representation of M at e. Thus, TeΣ = span{B,U, Z} for
M ∈ {S(2, k), S(5, 1), S(6, 1)}, or TeΣ = span{B,U, V, Z} if M = S(3, k+, k−) with k+,
k− ≥ 1, where B ∈ a, U , V ∈ v, Z ∈ z are mutually orthogonal unit vectors, and V is
perpendicular to JzU .

Then L = Exp(RB ⊕ RU ⊕ RJZU ⊕ RZ) is a totally geodesic submanifold of M [2,
§4.1.11] isometric to a complex hyperbolic plane CH2. Hence Σ ∩ L is a totally geodesic
submanifold of L, which has dimension 3 since TeΣ ∩ TeL = RB ⊕ RU ⊕ RZ. But this
is impossible, since the only irreducible symmetric spaces admitting a totally geodesic
hypersurface are those of constant curvature. �

6. Open questions

It is natural to ask whether Theorem 1.1 can be generalized to the non-compact case.
In order to prove an analogous result in the non-compact case, one needs to decide if the
spaces given in Corollaries 4.2 and 4.3 can have polar isotropy actions. For example, it
remains to decide whether the space Sp(n, 1)/Sp(n) can be endowed with a Riemannian
metric such that its isotropy action is polar.

More generally, one may study whether Riemannian homogeneous spaces G/H with
non-trivial polar isotropy actions are symmetric without requiring G to be semisimple, i.e.
one may seek to extend the results of §5 to other classes of homogeneous spaces. We are not
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aware of any irreducible non-symmetric Riemannian homogeneous space with a non-trivial
polar isotropy action.

Finally, it is an intriguing question whether one can find a conceptual or geometric proof
linking polar isotropy with symmetry.
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José Carlos Diaź-Ramos
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