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Abstract

Nonparametric regression with random design is considered. Estimates are defined by
minimzing a penalized empirical Lo risk over a suitably chosen class of neural networks
with one hidden layer via gradient descent. Here, the gradient descent procedure is
repeated several times with randomly chosen starting values for the weights, and from the
list of constructed estimates the one with the minimal empirical Lo risk is chosen. Under
the assumption that the number of randomly chosen starting values and the number of
steps for gradient descent are sufficiently large it is shown that the resulting estimate
achieves (up to a logarithmic factor) the optimal rate of convergence in a projection
pursuit model. The final sample size performance of the estimates is illustrated by using
simulated data.

AMS classification: Primary 62G08; secondary 62G20.

Key words and phrases: gradient descent, neural networks, nonparametric regression,
rate of convergence, projection pursuit.

1. Introduction

1.1. Scope of this article

Motivated by the huge success of multilayer neural networks in applications (see, e.g.,
Schmidhuber (2015) and the literature cited therein) there has been an increasing interest
in the theoretical analysis of such estimates. Often this is done in the area of nonpara-
metric regression, and recently there has been a tremendous progress in the theoretical
understanding of least squares regression estimates based on deep neural networks, i.e.,
neural networks with many hidden layers. The corresponding theoretical results are based
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on the derivation of new approximation results for piecewise polynomials by neural net-
works, and they make extensive use of the network structure, which allows to exploit com-
pository assumptions on the structure of the regression function in order to circumvent
the curse of dimensionality (cf., Kohler and Krzyzak (2017), Bauer and Kohler (2017),
Schmidt-Hieber (2017), Imaizumi and Fukumizu (2018), Kohler and Langer (2018), Eckle
and Schmidt-Hieber (2018) and Kohler, Krzyzak and Langer (2019)).

In all the articles above the neural network regression estimate is defined as a nonlinear
least squares estimate, i.e., as a function which minimizes the empirical Lo risk over
a nonlinear class of neural networks. In practice, it is usually not possible to find the
global minimum of the empirical Ly risk over a nonlinear class of neural networks and one
usually tries to find a local minimum using, for instance, the steepest descent algorithm.
So although the above theoretical results are quite impressive, there is a big gap between
the estimates studied theoretically and the estimates used in practice.

The purpose of this paper is to narrow this gap. To do this, we consider the following
question: If we define a neural network regression estimate theoretically exactly as it
is implemented in practice, can we show a rate of convergence result for this estimate?
The ultimative goal is to analyze theoretically neural network regression estimates which
are actually used in practice. As a first step in this direction we define a simple neural
network regression estimate where we use gradient descent in order to learn the weights
of a neural network with one hidden layer in a projection pursuit model. We show that
if we repeatedly apply this procedure to starting values, which are chosen randomly
from a special structure, then, for sufficiently many starting values and steps in each
procedure, we will find an estimate which achieves the optimal rate of convergence up to
a logarithmic factor in this projection pursuit model.

1.2. Nonparametric regression

We study neural network estimates in the context of nonparametric regression with ran-
dom design. Here, (X,Y) is an R? x R-valued random vector satisfying E{Y?} < oo,
and given a sample of (X,Y) of size n, i.e., given a data set

D, ={(X1,Y1),...,(Xn,Y0)}, (1)

where (X,Y), (X1,Y1), ..., (Xn,Ys) are i.i.d. random variables, the aim is to construct
an estimate
M () =mp(-,Dy) : RT 5 R

of the regression function m : R? — R, m(z) = E{Y|X = z} such that the Lo error

/ () — m(x) PP (dx)

is “small” (see, e.g., Gyorfi et al. (2002) for a systematic introduction to nonparametric
regression and a motivation for the Lo error).

It is well-known that one needs smoothness assumptions on the regression function in
order to derive non—trivial results on the rate of convergence of nonparametric regression



estimates (cf., e.g., Theorem 7.2 and Problem 7.2 in Devroye, Gyorfi and Lugosi (1996)
and Section 3 in Devroye and Wagner (1980)). To do this we will use the following
definition.

Definition 1 Let p = ¢ + s for some ¢ € Ng and 0 < s < 1, where Ny is the set
of nonnegative integers. A function f : RY — R is called (p, C)-smooth, if for every
a = (a,...,aq) € Nd with 2?21 aj = q the partial derivative é)x?l.(.lw exists and
satisfies

olf olf

_ <Oy — o8
&E?l...@wg‘i(m) 8$‘f1...8$3‘d(2) <Cllz =]

for all z,z € R, where || - || denotes the Euclidean norm.

Stone (1982) showed that the optimal minimax rate of convergence in nonparametric
regression for (p, C)-smooth functions is n~2P/(2rtd) 1Tn case that d is large compared to
p this rate of convergence is rather slow (so called curse of dimensionality). In the sequel
we want to circumvent this curse of dimensionality by imposing the additional constraint
on the regression function that it satisfies a projection pursuit model, i.e., by assuming
that it satisfies

m(z) =) gs(ciz) (¢ €RY) (2)
s=1

for some r € N, ¢, € R? and (p, C)-smooth functions g : R — R (s = 1,...,r). Under
this assumption our aim is to show that suitably defined neural network estimates, which
can be actually implemented in an application, can achieve the one-dimensional rate of
convergence.

1.3. Main result of this article

In this paper we study neural network regression estimates using neural networks with
one hidden layer in the above projection pursuit model, i.e., we assume that the regression
function satisfies (2). We learn the weights of our neural network regression estimate by
choosing in a first step randomly vectors for the directions c; of our projection pursuit
model, by defining in a second step an appropriate starting value for the weights of our
neural network regression estimate based on the randomly chosen directions, and by
applying in a third step successively many gradient descent steps in order to optimze the
weights of our neural network. Then we repeat this whole procedure several times and
choose from the list of estimates which we get the one with the minimal error on our
training data.

Our main result is that for a sufficiently large number of repititions of this procedure
and a sufficiently large number of gradient descent steps the expected Lo error of a
truncated version of our estimate converges towards zero in the projection pursuit model
(2) in case of (p,C)-smoth functions gs (where p < 1) with the rate of convergence

(logn)? 2T
(=)



i.e., with the optimal rate of convergence up to a logarithmic factor. Here, the rate of
convergence is independent of the dimension d of X. Hence, our neural network regression
estimate is able to circumvent the curse of dimensionality in the projection pursuit model
(2).

We achieve this result by choosing our initial weights such that the initial network
basically computes a piecewise constant function and by showing that in this case the
gradient descent is able to choose the outer weights in the neural network in an optimal
way (provided the number of gradient descent steps is sufficiently large).

1.4. Discussion of related results

It is well-known that it is possible to circumvent the curse of dimensionality by imposing
additional constraints on the structure of the regression function. Stone (1985) assumed
that the regression function is additive, i.e., that m : R? — R satisfies

m(zW, 2Dy = my(2M) + -+ mg(a @) (W, 2@ e R)

for some (p,C)—smooth univariate functions my,...,mg : R — R, and showed that
in this case suitably defined spline estimates achieve the corresponding univariate rate
of convergence. Stone (1994) extended this results to interaction models, where the
regression function is assumed to be a sum of functions applied to at most d* < d
components of x and showed in this case that suitably defined spline estimates achieve
the d*—dimensional rate of convergence. Other classes of functions which enable us to
achieve a better rate of convergence results include single index models, where

m(x) = g(c'z) (z€RY)

for some ¢ € R? and g : R — R (cf., e.g., Hiirdle and Stoker (1989), Hirdle, Hall
and Ichimura (1993), Yu and Ruppert (2002), Kong and Xia (2007) and Lepski and
Serdyukova (2014)) and projection pursuit, where it is assumed that (2) holds for some
reN,cseR?andgs: R =R (s=1,...,7) (cf, e.g., Friedman and Stuetzle (1981) and
Huber (1985)). Horowitz and Mammen (2007) studied the case of a regression function,
which satisfies

Ly Lo L,
@) =g (S [ Son [ Do n@) ).

=1 lo=1 l=1
where g, 91,5 ..., 91,1, are (p, C)-smooth univariate functions and zhobr are single com-
ponents of z € R? (not necessarily different for two different indices (I1,...,1,)). With

the use of a penalized least squares estimate for smoothing splines, they proved the rate
n—2p/(2p+1).

For the Lo error of a single hidden layer neural network, Barron (1993, 1994) proves
the dimensionless rate of convergence n~1/2 (up to some logarithmic factor), provided the
Fourier transform has a finite first moment (which basically requires that the function
becomes smoother with increasing dimension d of X). McCaffrey and Gallant (1994)



showed a rate of n_'z’r’fifl%Jr6 for the Lo error of suitably defined single hidden layer
neural network estimate for (p, C')-smooth functions, but their study was restricted to
the use of a certain cosine squasher as the activation function.

Recently it was shown in several papers that neural networks can achieve a dimen-
sionality reduction in case that the regression function is a composition of (sums of)
functions, where each of the function is a function of at most d* < d variables. The first
paper in this respect was Kohler and Krzyzak (2017), where it was shown that under a
corresponding assumption suitably defined multilayer neural networks achieve the rate
of convergence n=2P/(2P+d") (up to some logarithmic factor) in case p < 1. Bauer and
Kohler (2017) showed that this result even holds for p > 1 provided the squashing func-
tion is suitably chosen. Schmidt-Hieber (2017) showed similar results for neural networks
with ReLU activation function, and Kohler and Langer (2018) showed that the results
of Bauer and Kohler (2017) also hold for very simply constructed fully connected feed-
forward neural networks. Eckle and Schmidt-Hieber (2018) showed that neural networks
with ReLLU activation function can approximate well piecewise polynomials with rather
general partitions based on the intersection of hyperplanes and used this result to relate
the error of neural network estimates to the error of piecewise polynomial partitioning
estimates. Kohler, Krzyzak and Langer (2019) derived a similar result for neural net-
works with squashing functions as activation function and used this result to prove that
neural networks are able to circumvent the curse of dimensionality in case that the re-
gression function has a low local dimensionality. Results concerning the approximation of
piecewise polynomials with partitions with rather general smooth boundaries by neural
networks have been derived in Imaizumi and Fukamizu (2018).

The above mentioned results show that least squares neural network regression es-
timates are able to circumvent the curse of dimensionality under much more general
assumptions than the projection pursuit model assumed in this paper. However, these
estimates cannot be computed in practice, whereas our result shows that in the projec-
tion pursuit model we can achieve this with neural networks even in the case where we
restrict ourselves to estimates which can be computed much easier.

Gradient descent has been studied in many different papers, see, e.g., Karimi, Nutini
and Schmidt (2018) and the literature cited therein. A standard reference is the mono-
graph Luenberger and Ye (2016). We also mention Poljak (1981) as an early paper, where
the case of noise corrupted function values is considered, too. Stochastic approximation
deals with the latter field, see, e.g., the monograph Kushner and Yin (2003), and here
in a classic situation the constant factor at the gradient is replaced by a decreasing fac-
tor at a vector of divided differences (multidimensional Kiefer-Wolfowitz method). The
paper of White (1989, 1992) brings together the two fields of stochastic approximation
and neural network models (see also Fabian (1994)). In Dippon and Fabian (1994) and
Dippon (1998) it is explained how gradient descent in stochastic approximation can be
combined with a slowly convergent global optimizer in order to find not only a local but
even a global minimum of a general function. The main difficulty of using such results to
derive rate of convergence results for neural network regression estimates lies in the fact
that for neural network regression estimates the neural network is using more and more



neurons with increasing sample size. This means that it is not sufficient to analyze gra-
dient descent applied to a fixed function where the number of steps is tending to infinity.
Instead the function is changing for increasing number of steps. Basically, this requires
the ability to analyze the behaviour of gradient descent for a finite number of steps. As
far as we know such results do not exist in the literature in case of a general function
like the empirical Lo risk of a neural network (which is neither convex nor has a global
minimum or an easily analysable Hessian matrix considered as a real-valued function of
the weight vector).

1.5. Notation

Throughout the paper, the following notation is used: The sets of natural numbers,
natural numbers including 0 and real numbers are denoted by N, Ny and R, respectively.
For z € R, we denote the smallest integer greater than or equal to z by [z]. The
Euclidean norm of x € R? is denoted by ||z||, and ||2||s denotes its supremum norm. For
f:RY =R let

1lloe = sup |£(2)

zCcRd

denote its supremum norm. A finite collection fi,..., fn : R — R is called an e-L;—
cover of F on z} = (21,...,2,) € (RY)™ if for any f € F there exists i € {1,..., N}
such that

LS Ge) i)l <<
j=1

The e-L1- covering number of F on z7 is the size IV of the smallest e-L1— cover of F on
2] and is denoted by N (e, F, x7).

1.6. Outline

The outline of this paper is as follows: In Section 2 we define our neural network regression
estimates and in Section 3 we present our main theoretical result. The finite sample size
performance of our newly proposed estimate is illustrated in Section 4 by applying it to
simulated data. The proofs are given in Section 5.

2. Definition of the estimate

In the construction of our estimate we assume that the regression function m satisfies
(2) and that the support of X is contained in the cube [—A, A]? for some given A > 1.
We approximate each gs : R — R by a neural network with logistic squasher

1
o)==

chosen such that it is close to a piecewise constant function of the form

K
u +— ZCLSJ . 1[bl,oo)'
=1



As we will show in Lemma 5 below, such a neural network can be chosen of the form

K
U Z asy - o(pn - (u—"0)),
=1

where p, > 0 is a large constant, and the error of this approximation will be small at
all those points, where p,, - |u — by| is large. By replacing u with ¢!z we see that we can
approximate m by networks with one hidden layer and K - r neurons in this hidden layer
defined by

K-r d
Freta) (@) =Y ag-o | Y brj-zP +beo | + ao. (3)
k=1 7j=1

Here, K - r € N is the number of neurons, ¢ : R — R is the activation function and
ap€R (k=0,...,K-r) and by;€R (k=1,...,K-r,j=0,...,d)

are the weights. The above condition that p, - [u — b;| is large in order to achieve a small
error at point u of the above neural network approximation of the piecewise constant
function is replaced by the assumption that

d
‘min |3 by XY 4 byl
=1

1=1,....n

is large, which will enable us to show that our approximation is good at all z-values of
the data points. And this condition in turn will be ensured by a proper choice of the
initial weights described below.

We will learn the weights by gradient descent. More precisely, we minimize the penal-
ized empirical Lo risk

n K-r
1 1
F(aa b) = H Z |fnet,(a,b)(Xi) - ifl|2 + g ’ Zai» (4)
i=1 k=0

where ¢; > 0 is a constant, by choosing an appropriate starting value (a(®, b(?)) and by

setting
o (t+1) a®
(b(t+1)> = (b(t)> — s (Vap F)@", ) (5)

for some A\, > 0 chosen below and t =0,1,...,¢, — 1.

Next, we explain how we choose the initial values (a(®,b(®) for our weights. As
explained above, our choice is motivated by the structure of m in the projection pursuit
model (2). Here the number r of terms in this model is a parameter of our estimate
(which we will choose data-dependent in any application, cf., Remark 2 below). In a first
step we randomly choose values

¢i,...,¢ € [—1,1]4 (6)



as an independent sample from a uniform distribution on [—1, 1]d. Using these values as

approximation of the directions c1,...,c, of our projection pursuit model, we define our
initial inner weights as follows: For s € {1,...,r} we define
b(s—1)-K+1,05 -+ > O(s—1)-K41,d>- -+ Vs:K,05 - - - sk d
according to cg: First we choose by,...,bx € R such that
bl < —A- \/&7
4-Vd- A
b > A- e
K — f K —1 )
4-Vd- A
beg1 —bp| < ——— (k=1,...,K—1)

K-1
and

. o Vd- A
X, —bp| > .
P el > (ntl) (K1)

Such a choice is always possible, e.g., we can set by = —vVd-A—2-v/d-A/((n+1)- (K —1))
and define by (k =2,..., K) by subdividing the interval

2.Vd-A
K—1

2.vd-A

—Vd-A+ (k—2)- =

,—d-A+(k—1)-
into (n4 1) equidistant subintervals of length 2-1/d- A/((K —1)-(n+1)) and by choosing
by as the midpoint of one of those intervals which does not contain any of the n values
cI'X; (such an interval must exists since not every one of the n + 1 disjoint intervals
can contain one of the above n points). As soon as we have chosen by, ..., bx we define
b(s—1)-K+k,j (s=1,....,r,k=1,...,K,7=0,...,d) such that we have for some p,, > 0
chosen below (cf., Theorem 1 below)

d
Z b(sfl).K+k,j . $(j) + b(sfl),K+k’0 = Pn - (651' — bk) for all z € Rd,
j=1

namely, we set

bls—1);+ky = Pn - € and  bis_1).x1r0 = —Pn - b

(s=1,....,r,k=1,...,K,j=0,...,d). Then we choose a; =0 foralll € {0,..., K-r}.
After this choice of (a(®,b(®)) we define (a1 b(t+1) recursively by (5) for A, > 0
and t = 0,1,... 6, — 1.
We repeat this whole procedure L,, times, and let

My
be the neural network which achieves the smallest penalized empirical Lo error (4) among
all the ¢,, networks. Finally we truncate our estimate by selecting some 3, > 0 and by

setting
mn(z) = T, mn(z),

where T z = max{min{z, 8, }, —f5,} for z € R.



3. Main result

Our main result is the following theorem.

Theorem 1 Letn > 2, let A>1 andlet (X,Y), (X1,Y7), ..., (Xpn,Yn) be independent
and identically distributed random variables with values in [—A, A]? x R. Set m(z) =
E{Y|X =z} and assume that (X,Y) satisfies

E (eCQ'mQ) < 00 (7)

for some constant co > 0, and that m satisfies
.
m@) =Y gu(cTz) (€ R
s=1

for somer €N, cs € [-1,1] and gs : R = R (s = 1,...,7). Assume that g5 is (p,C)-
smooth for s € {1,...,r}, where p € (0,1] and C > 0 are fized. Define the regression
estimate my, as in Section 2 with

B 1

14’

with parameter v as in the above projection pursuit model, and with the other parameters
chosen by

o(x)

1

o = s logn, K = Ky = [(n/(log))/CrV]], Ay = —,

Pn:n2‘Ka

and
tn = Kp-n-(ogn)? and L, = [(logn)-n"% @+,

Then my, satisfies

(logn)? ) i

n

B [ (o) = m(o) PP (o) < s (

for some constant ¢y > 0 which does not depend on n.

Remark 1. According to Stone (1982) the rate of convergence in the above theorem is
optimal up to a logarithmic factor in case of a (p, C')-smooth projection pursuit model.
Because of the fact that this rate of convergence is independent of the dimension d of X,
the above theorem shows that our newly proposed computable neural network regression
estimate is able to circumvent the curse of dimensionality in case that the regression
function satisfies the assumption of projection pursuit. We should however mention
that the number of repitions L, of the initial random choices of the directions cs and
correspondingly the number of repititions of the ¢,, gradient descent steps is rather huge.
Remark 2. The parameters r and K, of the above algorithim depend on the projection
pursuit model and hence are unknown in any application. However, it is easy to choose
them data-dependent by using, e.g., the splitting of the sample technique es explained in
the next section. In this way it is possible to define an estimate which does not depend
on the value of r of the projection pursuit model and which is nevertheless able to achieve
the rate of convergence in Theorem 1.



4. Application to simulated data

In this section we illustrate the finite sample size performance of our newly proposed
estimate by applying it to simulated data.

The simulated data which we use is defined as follows: We choose d = 4, X uniformly
distributed on [~1,1]%, € standard normal and independent of X, and we define Y by

Y =mi(X)+0-Aj-¢ (8)

where m; : [-1,1]¢ — R is described below, \; > 0 is a scaling value defined below and
o is chosen from {0.05,0.2} (5 € {1,2}). As regression function we use

. 2.7
my(x1, 2, x3,74) = 2 - sin < (—x1+ 22 — 23+ 5B4)> )

V4

so m satisfies a single index model, and

mo (1, X2, T3, Z4)

2.
:4-sin<ﬂ-(—x1+xg—m3+x4)>

V4

hence mo satisfies a single index model with 7 = 2 terms. A; is chosen approximately
as IQR of a sample of size 100,000 of m(X), and we use the concrete values \; =
2.8289 and Ao = 5.2841. From this distribution we generate a sample of size n = 100
and apply our newly proposed neural network regression estimate and two alternative
regression estimates to this sample. Then we compute the Lo errors of these three
estimate approximately by using the empirical Ly error 7, y(-) on an independent sample
of X of size N = 10,000. Since this error strongly depends on the behavior of the correct
function m;, we consider it in relation to the error of the simplest estimate for m; we
can think of, a completely constant function (whose value is the average of the observed
data according to the least squares approach). Thus, the scaled error measure we use for
evaluation of the estimates is e, y(mn:)/€p, y(avg), where &7, y(avg) is the median
of 50 independent realizations of the value one obtains if one plugs the average of n
observations into €7, y(-). To a certain extent, this quotient can be interpreted as the
relative part of the error of the constant estimate that is still contained in the more
sophisticated approaches. The resulting scaled errors of course depend on the random
sample of (X,Y), and to be able to compare these values nevertheless we repeat the
whole computation 20 times and report the median and the interquartile range of the 20
scaled errors for each of our three estimates.

Our first estimate Tps is a smoothing spline estimate with parameter chosen by gen-
eralized cross validation as implemented in the routine 7’ps() of the library fields in R.

Our second estimate neighbor is a nearest neighbor estimate where the number of
nearest neighbors is chosen from the set {1,2,4,8,16,32} by splitting of the sample.
Here we split our sample in a learning sample of size n; = 0.8 - n and a testing sample of
size ny = 0.2 - n. We compute the estimate for all parameter values from the above set

7

+ )
2+\/%~($1—2-$2+3'1‘3—4-1‘4)

10



using the learning sample, compute the corresponding empirical Lo risk on the testing
sample and choose the parameter value which leads to the minimal empirical Lo risk on
the testing sample.

Our third estimate neural is our newly proposed neural network estimate presented
in this paper, which we have implemented in R. Here the parameters r and K of the
estimate are chosen via splitting of the sample (as described above) from the set {1,2}
and {5, 10,20}, respectively. In order to accelerate the computation of this estimate we
use only L, = 50 random choices for the vectors of directions in the computation of the
estimate for each parameter value.

The results are summarized in Table 1. As we can see from the reported scaled errors,
our newly proposed neural network estimate outperforms in all four settings both the
smoothing spline estimate and the nearest neighbor estimate.

mi mo
noise 5% 20% 5% 20%
z1, v(avg) 2.0109 2.0157 10.3565 11.1144
approach | median (IQR) | median (IQR) | median (IQR) | median (IQR)
Tps 1.18 (0.52) 1.19 (0.13) 0.89 (0.08) 0.91 (0.14)
neighbor | 1.06 (0.14) 1.13 (0.26) | 0.91 (0.06) | 0.86 (0.07)
neural 0.52 (0.33) | 0.46(0.24) | 0.42(0.14) | 0.53 (0.13)

Table 1: Median and IQR of the scaled empirical Lo error of estimates for m; and meo
for sample size n = 100.

5. Proofs

5.1. Learning of linear penalized least squares estimates by gradient
descent

Let (x1,91),- .., (Zn,yn) € REx R, let K € N, let By, ..
In this subsection we consider the problem to minimize

.,Br :R% = R and let ¢; > 0.

1 n K el
Fla)= 313 Sk Bylai) = wif* + - flall,

i=1 k=1

(9)

where

K
a=(a,...,ag)" and |alf* =) a,
j=1

by gradient descent. To do this, we choose al®) € RX and set
al*) —a® _ ) . (V.F)(a®) (10)

for some properly chosen A\, > 0.

11



Lemma 1 Let F : RX — R be differentiable and define at*™V) by (10), where

or some L, > 0. Let a,,; € RE be arbitrary.
P
a) If
[(VaF)(a1) = (VaF)(a2)[| < Ly - [la1 —agf| (a1, a2 € RY)

holds, then we have

1

(t+1)y _ ®y) < _
F@" /) - F@@") < 5 L.

b) If inequality (12) and, in addition,
|(VaF)@)I? > pu - (F(a) — Flag)) (a € RX)

hold, then we have

F(a(t+1)) _ F(aopt) < (1 _ szn) . (F(a(t)) — F(aopt)).

(11)

(12)

Proof. Lemma 1 follows from well-known bounds in the literature, see, e.g., Karimi,
Nutini and Schmidt (2018). For the sake of completeness a complete proof is given in

the supplementary material.

Lemma 2 Let F be defined by (9). Then we have for any ai,as € RK

K n
|(VaF)(a1) — (VaF)(a2)| < (2 SN B+ 2;?) Nl — 2]l
k=1 =1

Proof. We have

1
F(a):;.(B.a—y)T.(B.a—yH%-aT-a

where
B = (Bj(xi))lgign,lgjgf( and y = (y1,...,yn)’.
Consequently,
(VaF)(a) = % - (B"Ba-B'y) + 20 -a
and
2.

[(VaF)(a1) = (VaF)(a2)[| < H% ‘BB (a1 —a)| +

By applying twice the inequality of Cauchy—Schwarz we get

2 K K 2 n 2
= (Z(n > Bj(w) - Bi(x)) - ak)

7j=1 k=1 =1

2
Z.BTB.a
n

12

Jlar — ag|].

0



A
(]~
Avgls
Sl
s
&
e
=
5
e
El
S

IA
M=
M=
S
SR
o
T
e
|
]
=
T
=
»
[\

which implies the assertion. O

Lemma 3 Let F be defined by (9) and choose aqy such that

F(agy) = atgﬂi{l}( F(a).

Then for any a € RE we have

C1

[(VaF)(@)I* =~ (F(a) = F(ap))-

Proof. Set
B:(Bj(xi))lgign,lgjgl{ and A:E'B 'B—l-g'l,

where 1 is the unit matrix. Then A is positive definite and hence regular, from which
we can conlcude

Cl T

Fla) = —(Bra-y) (Bra-y)+2.al a

1
n
— aTAa— TlB 1 r
= a Aa-—2y - a+ny y

1 1
= (a—A 1EBTy)TA(a—A 1;BTy)+F(aOpt),

where
Using

and AT = A we conclude
F(a) — Fla)
41 .1
= (AY?)T(a~ A~ BTy)TAY(a~ A~ BTy)

n

41 41
< L (AY) (- A" -BTy) AA 2@~ A7 BTy)

1

13



=2 (A (a- A‘I%BTy))TA(a - A‘I%BTY)

c1
_n o 7 Clop
= (Aa——By)) (Aa— -B'y)
n 2 2
= -((2Aa— =B"y))"(2Aa - =B”
1o ((2Aa - y))' (2Aa - y)
__n 2
1 [(VaF)(a)[”,

where the last equality follows from

1 1 2
(VaF)(a) = Va <aTAa - 2yTgBa + nyTy> =2Aa— EBTy.

5.2. Result for neural networks with one hidden layer

In this subsection we study neural networks with one hidden layer, which are defined by

K d
et (ap) () = Zak o Zbk,j a9 + b | + ao (14)
k=1 j=1

(compare (3)), where K € N is the number of neurons, ¢ : R — R is the activation
function and where the weights

ar (k=0,...,K) and by, €R (k=1,...,K,j=0,...,d)

are learned by gradient descent. More precisely, we minimize
1 & T
1
F(a,b) = — D | fnetapy (@) — vil* + o > ai (15)
i=1 k=0
(compare (4)) by choosing an appropriate starting value (a(®, b)) and by setting

A (t+1) a®
(b(t+1)> = (b(t)> = (Vap F)@", ) (16)

for some A, > 0 chosen below.
Our main idea is, that in the case of the logistic squasher

the neural network (14) is for appropriate weigths by ; close to a linear combination of
indicator functions, and in this case the gradient descent will change the inner weights
by, only slightly. From this we will conclude from our results for linear least squares

14



estimates that for such networks the gradient descent leads to estimates where the outer
weights aj, are chosen optimally.

In Lemma 5 below we study the approximation of Hélder continuous functions by
neural networks of the above form in the case of univariate functions and networks. To
do this, we will need the following auxiliary result.

Lemma 4 Let o be the logistic squasher.
a) For any v € R we have
|0(x) = 1jg,00) ()] < €7,

b) For any b € R, ¢ > 0 and z € R we have
o(c- (@ =) = Lppoy(@)] < e 0
Proof. a) For x > 0 we have

1 e ” _ _
[o() — Ljg00) (@) = 1 — T e~ 11w S¢ 2 = eIl

And for x < 0 we get

o (2) = Ljo,00) (%) =

b) From ¢ > 0 and a) we get
0(c (2= 8)) = Ty ooy (@) = lo(c+ (2 — ) — Lyl - (2 — )] < e7e@0 = =l
O

Lemma 5 Let o be the logistic squasher. Let a,b € R with a < b and let m : [a,b] — R
be (p, C)-smooth for some p € [0,1] and C > 0. Let ¢ >0, K € N and sel

b—a

K

by =a+ k- (k=0,...,K —1).

Let
apg = m(a) and ap = m(bk) — m(bk_l) (k = 1, .. .,K — 1).

Then we have

K-1

. — p . C* —a

sup |ap + Z ag - o(c- (x —by)) —m(x)| < W—!—C’-(b—a)p-Kl_p-e_ G
z€[a,b] k=1

Proof. We have

K-1
a+ Y ag-oc: (v —by)) —m(x)
k=1

15



K-1

a+ Y ap Ly, oo)(x) — m(z)] .

k=1

K—
(x —br)) — Z ak L, 00y (T)| +

For b < x < biy1 we can conclude from the definition of aj and the (p, C')-smoothness
of m

K-1
a0+ Y a - 1p, 00 (@) — m(z)
k=1

C-(b—a)P

— ag—i—Zaj—m(a:) = ’m(bk)—m(x)\ §C~\bk—x\p§ i

It is easy to see that this inequality is also true for x = b, hence we have shown

K—1
C-(b—a)P
sup |ag + ar Ly o0)(2) = m(z)| < —— .
x€|a,b] ; m KP
We finish the proof by showing
K—1 K—1
sup Zak olc-(x—bg)) Zak Lipy,,00)
z€a,b] —1
2. (b - a)p -C p l—p —clb=a)
g—Kp +C-(b—a) - K"P.e K
For by, < x < bi41 we have
K-1 K—1
Zak U( iL'—bk Zak 1bk7
k= =1
k—1
<> lagl - ote (@ = 7)) = 1, o0 (@) + lan] + x|
j=1
K—1
+ 7 agl foler (@ = 8) = 1, o) @)
j=k+2

< 1 (24 (K—3)-
< o ol (2453

ol (= 8) = Ly, (@) ).

max
JE{1.2,. k=1 k+2,k+3,.. . K—1}
Using the (p, C')-smoothness of m, which implies

(b—a)
Kr
together with Lemma 4 we get for by < o < biyg

la;| < C-

K-1

Z ag - O' x - bk)) Z ag - 1[bk,oo)(x)

k=1

16



(b—a)? —c|z—bj]
<C. (24 (K - 3)- Y
- Kp (2+( ) je{1,2,‘..,k—1fgi§k+3w»K—l}e )

20b—a) - C p pl-p —gbza)
S i Ul L

Lemma 6 Let o be the logistic squasher. Define F by (15) and set
b=b- )\, - (VpF)(a,b)
for some A\, > 0. Then we have for any k € {1,..., K} and any j € {0,...,d}:
i = bigl < w2 V/Flab) - max{L,max{]ai’|}} - Jax
d

-exp | — min Zbkvj . :L‘Ej) +bro

2:17"'777‘ .
J=1

Proof. Using
o' (@) = lo(2) - (1 = o(x))| < min{[o(2)], |1 - o(2)]} < |o(z) = Lo ()]

(where the first inequality holds due to o(z) € [0,1]) we can conclude from Lemma 4
that

d
(7)
erllaxna Zbki x;”" + b0
7j=1
d
<ZEr11aX exp Z k,j a/: —|—ka

Jj=

=exp | — mm Zbk,y x(])—i—bko

As a consequence, we get for k € {1,...,K} and j € {1,...,d} by the inequality of
Cauchy-Schwarz

‘8F

e b)\

= *Z fnet (a,b) xl)_yl) ag - o' Zbkj $ +bk0 xfj)

7j=1

n

d
1 . .
<2-farl - = 3 et am (@) = il - e o' | Db -2 + big
j=1

i=1

17



I I
2-anfnet,(a,b)<mi> wil? - (a)? - o - chﬂzbm 2 4 o)
=1

d

<2- F(a,b)-mﬁx{;pgl)}.ak.\l Zl|0' Zbkl :L‘l +bk0)|

<2.4/F(a,b)- malx{]xgl)]} -|ag| - exp | — min Z b j - xl(j) + br0

=1,...,n

Hence, we have shown

|br.j — b
oF
—\,- b
lablw (a )’

d
<A -2-vF(a,b) -max{\:cgl)\} -lag|-exp | — min E b, - ml(-j) + bro
4,0 i=1,...,n —
J:

forany k € {1,...,K} and any j € {1,...,d} .
In case that k € {1,..., K} and j = 0 we get in a similar fashion

oF

bro—b = -
|bie.0 — .ol labko

(a.b)

IN

d
An-2-y/F(a,b)-1-]ag|-exp —ir{lin Zbk,j"rz('])—i_bk,o

=1,...,n

which implies the assertion.

Lemma 7 Define F by (15) and define (a*
forte{l,... t,}

), bW by (16). Assume that (), b®)) satisfy

F(a(t)7b(t)> S cs < 00, (17)
[aP* < c6 - n < o0, (18)
0 0
i=1,..., 2112111 , Zbi(w) 2! bl(c% > 0p >0 (19)

and
dn,

(d+1) -t An-2- /a5 - max{Lmax{af’ ")} - Vag n-oxp (=6,/2) < T (20)

Then we have for every k € {1,..., K}, any j € {0,...,d} and any t € {1,...,t,}:

b — b1 < A2 /05 - max{ L max{[af)}} - Ves T exp (<60/2). (21)

18



Proof. We show (21) by induction on t. For ¢ = 1 the assertion follows from Lemma
6 and (17)-(19). Now, we assume that (21) holds for all ¢ € {1,...,s}, where s €
{1,...,t, —1}. Then

) = b)) <t An -2+ /G5 max{1, max{[a"}} - Ve 7+ exp (<0a/2).

from which, together with assumption (19), we can conlcude that

d
() (4 4 p(s)

2—1, .,g}ir:lL ,K = ka 1'7: + bk70
- 0) .G (0)
i 0 J 0
> ..
= 271, }7’?’1}21 ..... K Z bkv] 1’1 + bk? 0
Jj=1
5 0 .] S 0
_ i:l,_._%%}:{L K z; |bk,j - bk,j| . “Tz | + |bk70 B bk70|
J:
)0 0
s 0
=0 =1, Ir]?%):{l K Zo |bk,j B bk,j| : max{l,n%’g}x{m 1}
j:

(22)

where the last inequality is implied by inequality (20). So, for the induction step, appli-
cation of Lemma 6 together with (17) and (22) yields

b =B < A2 [P, b)) - max{1, max{jel[}} - af”)

%
i=1,...,n ’

d
-exp | — min Z b,(j; W) b,(f[)]
j=1

< An-2- /e - max{lmax{le|}} - /e - exp (<0/2),
from which we conclude the assertion. O

Lemma 8 Define F by (15), set

and define (a®), b®) by (16). Assume that (al® b)) is chosen such that

F@® b®) < ¢ <00 (23)

19



and

i=1,...,n,k=1,...,

d
. 0 j 0
min g 1 b](w) . xl(ﬂ) + b](ﬁ% >0, >1 (24)
iz

hold. Let t, € N and assume 2-c¢1 < K - n,

(d+1)%-n?

s max{Lmax || 1)

1
36 - max{1, 6—5} -max{1l, <} -
C1 ]

" 4
2
1 = 2] 2. —6,/2) <1 25
<+c5+n;yz> nexp (—0n/2) < (25)
and
3ty -exp(—d,/4) < 1. (26)
Then for any t € {0,1,...,t, — 1} we have

F(a®™b b4y — min F(a, b®)

a

__a 0 pO) _ i (0) oD (—
g(l 6'K'n) (F(a b®) — min F(a, b ))+(2\/g+1) exp (—0,/4)

6-K-n
C1

_l’_

-3 -exp(—d,/4).

Proof. We have
F(a®™b bt+Y)) — min F(a, b®)

= (F(a™,b1) — P+, b)) + (F@),b®) — min F(a, b))

a

+ (min F(a,b®) — min F(a, b(o))) .
a

a

We take a look at the second and the third term on the right-hand side of the above
equality. Lemma 2 and |o(z)| < 1, which give us

2-01

[(Fa)ian b) = (FaF)(an )] < (2054 22 ) - s = mall <3 K- s — ol

n

together with Lemma 3 allow us to conclude from Lemma 1 that

F(a®Y b®) —min F(a,b®)

As a consequence,

(F(a(tﬂ),b(t)) — min F(a,b(t))) + (m;n F(a,b®) — min F(a, b(o))>

< (1 — 5 ; : n) . (F(a(t)7b(t)) _ mainF(a, b(t)))

20



+min F(a, b®) — min F(a, b®)
—(1- 4 ). ® b®) — mi (0)
(1 6-K-n) (F(a ,b'") malnF(a,b ))

v (mi ) — mj (0)
+6-K-n (m;nF(a,b ) malnF(a,b )) (27)

and so
F(al+h pl+h)y min F(a, b®)
__a ® b®Y _ i (0)
(1 L ) (( ,b®) — min F(a,b ))

n a

6 ;{ (m n F(a,b® minF(a, b(o))>
F(a(t+ )’b(t+1 ) F( (t+1) b(t)) (28)

In order to bound this term further, we introduce the following notation for simplicity

w = (P@®,b®) - min F(a, b)) .
C T K-

In the sequel, we will derive upper bounds S, 82 > 0 such that
81 > minF(a,b®) — min F(a,b®),
a a
52 > F(a(t+1), b(t+1)) _ F(a(t"'l), b(t))

Then, the above results imply that we have

Yer1 < (I — ) -y + - i + Po,

and applying this relation recursively using standard techniques from the literature we
get

Tr1 < (I—a) (I—a) w1 +a-fi+B)+a B+ b
= (11— ya+(1-a)-a-fi+a pi+(1—a) fa+p
<
B t t
< (1-a)" i+ (1-a)fa-fi+d (1-a)
k=0 k=0

< (1—a)t+1-70+Z(1—a)k-a-ﬁ1+2(1—a)k
k=0 k=0

_ 1 a- By B2
= (- G S p—

= G-t s 2
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It remains to find 81 and B2. In order to derive and upper bound B1, we will apply
Lemma 7, for which we show the following claim for all s € {0,1,...,¢,—1} by induction

max {F(a(s+1)7 b)), F(als+D), b<s+1>)} — min F(a, b©®)

1 n
<ot leﬁ +3-(s4+1) - exp(—6n/4). (29)

While doing so, we will be deriving an upper bound S5 in the process. For s = 0 the
inequality trivially holds by (27), (28), (23) and by the bound
F@W, b)) — F(a® b®) <3 exp (—d,/4)

which will be proven below (cf., (32)).
So, for the induction hypothesis, assume that (29) holds for s = t — 1 for arbitrary
te{l,...,t, — 1}. Trivially we have

min F(a, b) — min F(a,b®) < F(0,b) = % S,

a
i=1
hence by (27) and by the induction assumption we get

F(a®™b b®) —min F(a,b®)

a

< (1 2 ) - (Fa®,b0) — min Fla, b))

C1
6-K-n

§<1—6.2'n)-<C5+;;y3+3-t-exp(—5n/4)>
6 K n nZ:yZ

< - 2 ot — )
_C5+n2yl +3-t-exp(—dn/4) (30)

+

. (min F(a,b®) — min F(a, b(o)))
a

a

Next, by (28) and by the induction hypothesis we get

F(a®h pt+Dy _ min F(a,b®)

< s+ % > yi 43 t-exp(—0,/4) + F(@"™), b)) — p@“*t) b®). (31)
i=1

Further, we have

F(a(tﬂ), b(t+1)) o F(a(t+1),b(t))
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1
" (fret (@40 pe+0) (Ti) + frer at+n poy (Ti) — 2yi)

=1
( net,( <t+1>,b(t+1))(3«°z’) - fnet,(a<t+1),b<t>)($i))
n

1
Z (2 et (at+D b)) (@) = 24) * (frer (a1 pe+1) (%) = frer (a1 pw) (i)
z:l
1 n
=y Z(fnet,(a(tﬂ),b(wl))(wi) — Fret,(att+1) by (i)
i=1
1 n
<2 /F@ 0, b0) - (| =% (Frep a1 pe0) (1) = Fet (a0 poy (7))
i=1

1 n
g Z net,(at+1), b(i"’l))( ) - fnet,(a(t+1),b(t))(xi))2'

Since o is Lipschitz continuous applying the inequality of Cauchy-Schwarz a second time
yields

E Z(fnet,(a(t"‘l),b(t"‘l))($i> - f'net,(:‘;\(t"'l),b(t))('T’.i))2

i=1
d 2

o t+1 ) (t+1) (t) ()
_72 Z (t+1)y,. . Zb J+b -0 Zb,w 2V +bk70

=1 k=1

K
§Z (a2 . max{1, max|:£(j 1’} - (d+1) ZZ\I)H_I —bt)

k= k=1 j=0

n
< L p@EED p® 1 (d+1) byt — o2,
< M P@,bO)  max{1,max o)) (4 + YD )

k=1 j=0

By Lemma 7 (where (17) and (18) are true because of the fact that the induction hy-
pothesis implies that we have

1 & 2
t) p® - 2 (0) =32
F(@" b )§C5+ni§1yi+1+F(0,b )§1+65+n‘ Ui,

from which (together with the defnition of F') we can conclude that (17) and (18) hold
if we replace there ¢5 and cg by

2 O 2 1
1+4+c5+ - E y? and (1 +c5 + - g 1 yf) o respectively,
1=

i=1
and where (20) holds because of (25)) and because of (24) we know that for any k €
{1,...,K} and any j € {0,...,d} we have

|bt+1 _bt)‘
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< A2 (1 + o5+ i2y3> mac{1, max{|e[}} - v - exp (~60/2) //er.
i=1 "

Together with
F(a(’”'l),b(t)) < F(a(t),b(t))

1 n
< min F(a.b® = E 2 ot —5,/4
> mn (aa ) +¢5 + n Y + 3 eXp( / )

a
=1

2 -
< 1+C5+52yi

(where the first inequality follows trivially from Lemma 1, and where we have used the
induction assumption for the second inequality), this implies

1
- Z(fnet,(a<t+1>,b<t+1))(fUz') — Fret,att+1) by (7))
<4-. n—Q A2 (1 +e5+ — Zyl> max{l,rr;ax\xgj)ﬁ} (d+1)?- K -exp (—d,)
G
< 36 - (ch—%l)Kn -max{l,nggx\xz(»j)ﬁ} : (1 +o5+ — Zyz> -exp (—6,/2)
min {1, (F@, b))t} - exp (=5,/2)
< min {1, (F@",b®) 7 | - exp (~8,/2).
(Here the last inequality follows from (25)). Summarizing the above results we get
F(@) b)) — F@™) b)) < 3. exp (—6,/4) = Ba. (32)

By combining this inequality with the results above we get (29) for s = ¢t + 1. This

concludes the proof of (29).
Now, we see that the conditions of Lemma 7 are met, since we can conclude from

mlnF(a b®) < F(0,b®) Zyz

and from inequalities (29) and (26) that also (17) and (because of the defintion of F)
(18) hold where ¢5 and ¢ are replaced by

2 o 2 1
T+ces+ n Z 3/12 and (1 +c5+ - z;gﬁ) . o’ respectively.
1=

=1

As above we also see that (20) holds.
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Next we derive an upper bound on

min F(a,b®) — min F(a, b)),

Choose a such that
F(a,b®) = min F(a,b®).

a

Then

n
2.3} < F(a,b?) < F(a®,b®) < ¢,
[ —s
hence
K _9 Cy N
T
k=0
We have

a

min F(a, b®) — min F(a,b®) = min F(a,b®) — F(a, b®)
a a
< F(a,b") - F(a,b")

1 n
= n Z(fnet,(a,b(ﬂ)(%) + fnet,(a,b(m)(ffi) —2y;) - (fnet,(a,b(w)(%) - fnet,(a,b(m)(ffi))
i=1

- Z net,(a,b0) (%) = 2Ui) * (frer,@p®) (%) = fret (a,p©) (%))

"‘ﬁ Z(fnet,(ib(t))(xi) - fnet,(ﬁ,b(o))(xi))Q
i=1

i=1

_ 1 ¢
S 2 : F(a7 b(O)) : J ﬁ Z(fnet7(57b<t))(mi) - fnet,(57b(0>)(xi))2

1 n
+E Z(fnet7(57b<t))('ri) - fnet7(é7b(0))(xi))2'
=1

Applying the inequality of Cauchy-Schwarz a second time and since ¢ is Lipschitz con-
tinuous we get

n

1
n (fnet,(ib(t)) (i) — fnet7(5,b(0)) ($z))2
i=1
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By Lemma 7 we know that for any k € {1,..., K} and any j € {0,...,d}
b — bl
<10 = 0 V1 Y = 0GP 1) = )
<t Ap-2- (1 festl zn:y2> “max{1, —} - max{1, max{|z"[}} - Vi1 - exp (—6,/2).
n cl il

From this we conclude that

Z(fnet,(a,b(w) (i) — fnet,(é,b(o)) (%))2

1

S|
5

az - max{l, max|3: \} (d+1)-K-(d+1)

AN
I

2
A (1 +e5+ = Zy@> max{1, -} (1, max{a}} \/ﬁ-exp(—én/2)>

1 .
< = max{l } <1+C5+ Zyz) nQ-maX{l,maX|:U§])|4}- (d+1)>
17]

C1
K-t )2 exp (—6,)
< €xp (_571/2) )
where the last inequality follows from (25). Hence,

min F(a,b®) — min F(a, b®)

a a

1 n
<2-4/F(ab®). J n Z(fnet,(é,b(t>)(xi) - fnet,(é,b<0))(37i))2

=1
L1 & )
. Z net,(a, b(t> - fnet,(é,b(o))($i))
n :
1 n
< (2-4/F(a, b(o)) +1)- J n Z(fnet,(é,b(t))(mi) - fnet,(é,b(()))(xi))Z
=1

<(2-Ves+1)-exp(—6n/4) = B
Plugging in the above results yields

F(a® bty — min F(a, b®)
a
< (1—04)t+1'70+61+%-

T e O RO ——" © . exp (—
§(1 6-K-n> (F(a , b)) m;nF(a,b ))—I—(Z Ve + 1) -exp (—d,/4)
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6-K-n
+7
c1

-3 -exp(—d,/4),

which concludes the proof.

5.3. Two auxiliary results from empirical process theory

Lemma 9 Let 8, = c3 - log(n) for some suitably large constant c3 > 0. Assume that
the distribution of (X,Y) satisfies (7) for some constant ca > 0 and that the regression
function m is bounded in absolute value. Let Fy, be a set of functions f : R? — R and
assume that the estimate m, salisfies

my, = Tg, My,

Mp () = mn (-, (X1, Y1), ..., (Xn, Ya)) € Fn

and

1 < N 5
n Z Vi =i (X3)[" - Ly <, for all iequ,..n}
=1

(1
< min <n Zl Y; — gna(X0)|? + penn(gny) + En,z>
1=

for some random functions g, : R? — R, some nonempty parameter set ©, and some
random penalty terms peny,(gn;) > 0, and some additional deterministic term €, , where
Gn, and peny(gn,) are independent of the data (X1,Y1), ..., (Xy,Yn).

Then my, satisfies

c7 - (logn)? - (log (Supm? M (ﬁ,fn, m’f)) + 1)

n

E / () — m(z) 2P x (dz) <

f2.E {lé%fn ( [ om1(0) = @) PP () + pemgs) + l> }

for n > 1 and some constant c; > 0, which does not depend on n, 3, or the parameters
of the estimate.

Proof. This lemma follows in a straightforward way from the proof of Theorem 1 in
Bagirov et al. (2009). A complete version of the proof is given in the Supplement. O

In order to bound the covering number NV} (ﬁ, Fus :E’f) we will use the following lemma.

Lemma 10 Let max{K, f,, v} < n® and define F by

K d
F = {f:RdaR:f(x):Zak-a > b2 4o | (zeRY
k=0 j=1
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K
for some ay, by j € R satisfying Z ai < ’yn.}
k=0

Then we have for any x7 € (RY)":

log (Nl( B ,F, x1>> < cg-logn- K.

K

Z |al€|2 < Tn

k=0

Proof. Using that

implies

K
> lakl < VK +1-, Z]ak\2<\/K+1 Y
k=0 k=0

we can conclude from Lemma 16.6 in Gyorfi et al. (2002) that we have

N1< R , F, :J:1>

(W E D+ )\ (o vy T

= 1/(2-n- By) NVE T Dt Ym0t ’
where

G = {g R SR :glx)=0 Zb 2D 4+by | (zeRY
forsomebo,...,deR}.

By Lemma 16.3, Theorem 9.5 and Theorem 9.4 in Gyorfi et al. (2002) we get

N1< 1/(2-n-f,) gﬂ>
VE+ D +1/m- 8.

<3- (26-(2-n-\/K+1-6n-\/%+2)

d+2
.1og(3e-(2.n.\/K+1~ﬁn~\/7n+2)>> :

which implies the assertion.
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5.4. Proof of Theorem 1

From the definition of the estimate and from Lemma 8 we get

-----

. 1 n ) e K-r )
< aCRELIL o L <n ; Yi = fret,(a,ow) @) (Xi)|” + - kz::(] aj + en

where

c tn \/g-A-pn
€n = <1_6-I;-n) '5721+(2'5”+1)'6Xp<_4-(n+1)-(K—1)>

6-K-n \/g-A-pn
+ o .3.eXP<—4(n+1)'(K_1)>

8
K- A
+6 n'3-exp<\/g n)

< exp (=5 - (logn)?) - 52+ (20 Bu+1) - exp (—M>

C1 8

Application of Lemma 9 and of Lemma 10 yields

E / () — m(2)[2P x (da)
~(log n)3- K

K
. 2 C1

+2-exp (=5 - (logn)?) - B2 + 2+ (2- By +1) - exp <M>

K- A
+2-6 n-3'exp<\/g n)

C1 8

8

The (p, C)-smoothness of the fj implies

m(z) =Y fo(ela)l = [ folede) =) fulela)]
s=1 s=1 s=1

IN

T
ZC’ Tz —clzP
s=1
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< r Ol max e, - el

yeeey T

Together with Lemma 5 this implies

<cn- W et C* ﬁ +caz- B {l mln Jmax les — ég)HQp} :
The definition of K implies
(logn)? - K 9 1 (logn)? i
C11'f+0127“ -C K2p3614'< - ) )
hence it remains to show that we also have
2p

1 3\ Zp+1
E{ T, \csé£“||2”}sc15-((ogn>> .
n

I=1,....Lyp s=1,...,r

By the random choice of the c{" we know for any t € (0,1]

Ly
‘ — - — <
P {lﬁnlnL max les — el > t} H <1 P {s%?x,r s — el t}))

rd\ In
- 2

from which we conclude

E{l min Jnax llcs —CZ)HZP}

177n7

1
(1 2p+1 1 3\ 2pr1
( ogn) )p (2d)% - P{ min  max ||ck—cl(€l)H> <((ygn)> ’ }
=1Ly k=1r n
r-d Lnp
10gn i 1 (logn)3\ 2v+1
b= ord - n

1 2p+1
§015'<(0in) ) )

where the last inequality follows from

_r-d_

n 2p+1
o= Qo (o )™

Summarizing the above results we get the assertion.
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A. Supplementary material

A.1. Proof of Lemma 1.

a) For s € [0, 1] set
H(s) = F(a® + s (at*) — a®)y).

Then the fundamental theorem of calculus, the chain rule, the Cauchy-Schwarz inequality
and assumption (12) imply

1
F@') ~ F@) = H(1) - HO) = [ H'(s)ds
0
= /1(VaF)(a(t) +s- (@tt) —a®)). @t _ a®) g
0
= /1 ((VaF)(a(t) +s- (a(t+1) _ a(t))) _ (VaF)(a(t))) ) (a(tH) _ a(t)) ds
0 1 () (t+1) (t)
+/0(V8F)(a ) (a —a'")ds

1
< / Lo - [ls- (@t — a®)|| . [a®) — a®)|] ds
0

+(VaF)(@®) - (@t — a®)
Ly,
=5 [a®th) —a® |2 4 (V.F)(@®) - (@tth — a®).
Using (10) and (11) we get

F@) - F@Y) < T8 X0 [(VaF) @) = Al (VaF) @)
1 t
= 5 VB @)

b) From a) and (13) we get

F(al"*) — F(ag)
1
2L

L (Fa®) — F(agy))

< F(a®) — Flagp) — [(VaF)(@®)?

A.2. Proof of Lemma 9

In the proof we use the following error decomposition:

/ () — () PP (dz)
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_ @“m%m_yﬂa&—Eﬂmﬂﬁ—W%

— (B{lma(X) = T3, Y PD } = B{Ims, (X) - T,V [*})]

+ | B{lma(X) = T3, Y P } = B{ Img, (X) = T, Y[}
1 n
202 (Imn(X2) = T, Yil? = m, (X:) = T, Yif2)
1=
1 « 1 «
+ (20— D lmn(X0) = T, Yil* =2 = > fmg, (Xi) = Tp, Yil?
i=1 =1
1 « 1 —
(2 Sty v 225 iy - i)
i=1 i=1
1« 1«
+ |2 (n D ma(Xs) = Vi - - > im(Xs) - Yi|2>
=1 =1

where T, Y is the truncated version of Y and mg, is the regression function of Tp Y,
i.e.,

mg, (x) = E{TgnY]X - x}
We start with bounding 7} ,,. By using a? — b? = (a — b)(a + b) we get
Ty, = E{|mn(X) Y~ mg(X) — TﬁnYIQ‘Dn}
~E{[m(X) = Y| ~ [mg, (X) - T5,Y*|
- E{(Tﬁny V) (2ma(X) - Y — TB,LY)‘DH}

~E{ (m(X) = mg, (X)) + (T,Y =) (m(X) +mg, (X) =Y = Tp,Y) |
= TS,n + TG,n-
With the Cauchy-Schwarz inequality and

; L exp(ey/2- V)
PP = explea/2- B7)

we conclude

VE{T:Y — Y12} \/B{j2ma(X) — Y — 7, Y | D, }

VE(YE  Igvissn - /B{2 - [2ma(X) = T, Y2 + 2. [V 2D, }

|T5,n‘

IN

IN
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exp(c2/2 - 37)
VE{2 - [2ma(X) — Ty, Y2|D, } + 2E{|Y 2}
ey - B2
S R (-22%) - yforem)e + 2B (V).

With z < exp(x) for x € R we get

< E{IY|2 _exp(c2/2 - \Y\Q)}

2
VP <= e (2 vP)
co 2
and hence E{\Y\Q -exp(ca/2 - \Y\Q)} is bounded by

2 2
E <C2 - exp (62/2 . |Y|2) ~exp(ce/2 - |Y|2)) <E <c2 - exp (CQ . \Y2)> < c16

which is less than infinity by the assumptions of the lemma. Furthermore the third term
is bounded by /1832 + ¢17 because

E(|Y]*) <E(1/cz - exp(ez - [Y]?) < c15 < o, (34)

which follows again as above. With the setting 8, = c3 - log(n) it follows for some
constants cig, cog > 0 that

log(n)

Ts5.n] < V16 exp (—cig - log(n)?) - \/(18 -3 - (logn)? + c18) < e -

From the Cauchy-Schwarz inequality we get

Tom < 4|2 E{|<m<X> —mg, (X))} + 2 B{|(T5,Y - Y>|2}

E{ [m(X) + mg, (X) ~ Y Tﬂnyf},

where we can bound the second factor on the right-hand side in the above inequality
in the same way we have bounded the second factor from T3 ,, because by assumption
||m|| is bounded and furthermore mg, is bounded by 3,,. Thus we get for some constant
co1 >0

2
E{’m(X) +mg, (X)-Y — TgnY’ } < ¢91 - log(n).
Next we consider the first term. With Jensen’s inequality it follows that

E{\m(X)—mﬁn(X)yQ} < E{E(]Y—TﬁnYIQ‘X>}:E{]Y—TﬁnYIQ}.
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Hence we get

Ton < /4 B{Y - T5, Y[} 2 -log(n)

and therefore with the calculations from T ,, it follows that Tg,, < cg3-log(n)/n for some
constant cpg > 0. Altogether we get

Ty p < cog- log(n)
for some constant cgq > 0.
Next we consider T5 ,, and conclude for ¢ > 0
F(X) T Y| ‘mg (X) TzY|
P{ly, >t} <PLAf €Ty . Fn  E - £ -E 2 -t
oo =1} { F & Tbnsanto0 (‘ EAE b bn
72 ‘ X;) 1. ‘mﬂ (X:)  TpYi|”
Br Bn Br
1( ¢ X) T3Y/|? X) T3 Y|?
S LA ’f( ) T3, B ’mﬁn( ) Tp, 7
2\ 6 Bn Bn Bn Bn

where Tg, supp(x)Fn is defined as {T,Bn f-1
al. (2002) and the relation

Nl ( {6 1g € g} ) < Nl (5 : /Bnaga || : Hoo,supp(X))

for an arbitrary function space G and § > 0 lead to

supp(x) * € .7:”}. Theorem 11.4 in Gyérfi et

t n
P{T,, >t} <14-supNy | ———, Fn, |- . —_t].
{ 2n } = S;l?p 1 <80 ) 5n n || Hoo,supp(X)) exp ( 5136 - /612), >

Since the covering number is decreasing in ¢, we can conclude for g, > %

E(Tg,n) <ep+ / P{Tgm > t}dt

En

1 n 5136 - 32
< 14-supMNi | ———, Fn, 2l ) - S =
s e 1<n-5n M) eXp( 5136 32 5”) n

1 2
En = m -log (14 -sup N ( ]:n,x1>)
n 7 Bn

1

Choosing

(which satisfies the necessary condition &, > % if the constant c3 in the definition of 3,
is not too small) minimizes the right-hand side and implies

c25 - log(n)? - log (suplnf M (%Bn’ Fu,s x?))

n

E(T2,n) S
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By bounding T3, similarly to 17, we get

[—
o

—~
S

SN—

E(T3,) < c-

for some large enough constant cog > 0 and hence we get in total

a7 - (logm)? - (10g (M1 (7 Fs |- locsuppi) ) +1)

3

for some sufficient large constant co7 > 0.
We finish the proof by bounding 7, ,. Let A, be the event, that there exists ¢ €
{1,...,n} such that |Y;| > B, and let 14, be the indicator function of A4,. Then we get

1 n
E(Tyn) < 2'E<nZ’mn(Xi)—Yil2-IAn>
=1

1 & 1 —
+2-E (n D mn(Xi) = Yi? - Tag — - > Im(Xi) - Yz’|2>
=1 1=1
= 2-E(Ima(X1) = Yi|* - 1a,)
1 & 1 —
#2013 ) - g - L3 ) - it
n =1 n =1
= T7,n + T8,n-

With the Cauchy-Schwarz inequality we get for 1%,

ST < (/B ((ma(0) - ViPP) - VPR
< /B (@ma(x0)E +2MP2) o PO )
< E (exp(c2 - V1))

i

exp(cz - A7)

VE (8)mu(X1)[1 + 8|Y1[1) \/n '

where the last inequality follows as in the proof of inequality (33). With x < exp(z) for
z € R we get

2 o 2 2
BOVI) = BV W) <B (e (G ) e (5))

4
= g Bl ),

which is less than infinity by assumption (7) of the lemma. Furthermore ||[my||s is
bounded by 3,, and therefore the first factor is bounded by

cos - B2 = ca9 - (logn)?
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for some constant cag > 0. The second factor is bounded by 1/n, because by the assump-
tions of the lemma E (exp (02 . |Y1|2)) is bounded by some constant cgg < oo and hence

we get

\/n_ Blexp(e M) _ o

exp(cz - 32) - exp(cz - £2)

Van iy

~ exp((e2- ¢ - (logn)?)/2)

Since exp(—c - log(n)?) = O(n~2) for any ¢ > 0, we get altogether

logn)2y/n logn)?
T < e (BIVR <y, (0BT

With the definition of A§ and m,, defined as in the assumptions of this lemma we conclude

Tsn < ( Z|mn i) = Yi|? IAC——Zrm Y,P>
. 1 2 1 . 2
2-E ;gén;Dgl,n(Xi) =Yl 4 penn(gns) + ey = D Im(Xi) = Vi
=1

IN

=1

because [Tz — y| < |z — y| holds for |y| < 8. Hence by the independence of g,,; and
penn(gn) of (X1,Y1), ..., (Xn,Yy) we get that

E(T4,n)
1 2
< - (logn)
n
1 « )
+2'E<lrélénn2’gln( ) Y‘ +penn(gnl)+6nl_;‘m YVZ|>
1
< ¢39 - (ogn) +2. E(mm </|gln — )|2Px(da:)+2 penn(gnl)-i-enl))

holds. In combination with the other considerations in the proof this implies the asser-
O

tion of Lemma 6.
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